若abc=1,數(shù)學(xué)公式,則x=________.

2003
分析:根據(jù)題意,提出x,劃分分母拆項(xiàng),并利用題干abc=1,找出規(guī)律得出結(jié)果.
解答:∵abc=1,
∴原式可以化為:(++)x=2003,
==,
====
++==1,
++=++=1,
∴x=2003.
點(diǎn)評:本題主要考查了解一元一次方程,解題的關(guān)鍵是尋找規(guī)律,并利用所給條件,大膽推理,該題難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)I,根據(jù)下列條件,求∠BIC的度數(shù).
(1)若∠ABC=60°,∠ACB=70°,則∠BIC=
 

(2)若∠ABC+∠ACB=130°,則∠BIC=
 

(3)若∠A=50°,則∠BIC=
 
;
(4)若∠A=110°則∠BIC=
 
;
(5)從上述計(jì)算中,我們能發(fā)現(xiàn)已知∠A,求∠BIC的公式是:∠BIC=
 
;
(6)如圖,若BP,CP分別是∠ABC與∠ACB的外角平分線,交于點(diǎn)P,若已知∠A,則求∠BPC的公式是:∠BPC=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)實(shí)踐與探索!如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)I,根據(jù)下列條件,求∠BIC的度數(shù),
①若∠ABC=40°,∠ACB=60°,則∠BIC=
 
;
②若∠ABC+∠ACB=80°,則∠BIC=
 
;
③若∠A=120°,則∠BIC=
 
;
④從上述計(jì)算中,我們能發(fā)現(xiàn)∠BIC與∠A的關(guān)系式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①至圖④,半徑為1的⊙O均無滑動滾動,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點(diǎn)時(shí)刻的位置.
【閱讀理解】

(1)如圖①,⊙O從⊙O1的位置出發(fā),沿AB滾動到⊙O2的位置,當(dāng)AB=2π時(shí),圓心O經(jīng)過的路徑長為2π.
(2)如圖②,∠ABC相鄰的補(bǔ)角∠CBA=n°,⊙O在∠ABC外部沿A-B-C滾動,在點(diǎn)B處,必須由⊙O1的位置旋轉(zhuǎn)到⊙O2的位置,⊙O繞B點(diǎn)旋轉(zhuǎn)的角∠O1BO2=n°,此時(shí),圓心O經(jīng)過的路徑弧O1O2的長為
180

【實(shí)踐應(yīng)用】
(1)在閱讀理解(1)中,若AB=π時(shí),則圓心O經(jīng)過的路徑長為
π
π
;在閱讀理解(2)中,若∠ABC=120°時(shí),則圓心O經(jīng)過的路徑弧O1O2的長為
π
3
π
3

(2)如圖③,∠ABC=90°,AB=BC=π.⊙O從⊙O1的位置出發(fā),⊙O在∠ABC外部沿A-B-C滾動到⊙O4的位置,在這個(gè)過程中,圓心O經(jīng)過的路徑長為
2
2

【拓展聯(lián)想】
(1)如圖④,△ABC的周長為4π,⊙O從與AB相切于點(diǎn)D的位置出發(fā),在△AABC外部,按順時(shí)針方向沿三角形滾動,又回到與AB相切于點(diǎn)D的位置,在這個(gè)過程中,圓心O經(jīng)過的路徑長為

(2)如圖⑤,多邊形的周長為l,⊙O從與某邊相切于點(diǎn)D的位置出發(fā),在多邊形外部,按順時(shí)針方向沿多邊形滾動,又回到與該邊相切于點(diǎn)D的位置,在這個(gè)過程中,圓心O經(jīng)過的路徑長為
l+2π
l+2π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若abc<0,則
a4b3c2
可能化簡的結(jié)果為(  )
a2bc
b

-a2bc
b

a2bc
-b

-a2bc
-b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠ABC與∠ACB的平分線相交于O點(diǎn)
(1)若∠1+∠2=50°,則∠O=
130°
130°
;
(2)若∠ABC+∠ACB=120°,則∠O=
120°
120°
;
(3)若∠A=70°,則∠O=
125°
125°
;
(4)通過計(jì)算,你發(fā)現(xiàn)∠O與∠A的關(guān)系是什么?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案