【題目】我校小偉同學(xué)酷愛健身,一天去爬山鍛煉,在出發(fā)點(diǎn)C處測(cè)得山頂部A的仰角為30度,在爬山過程中,每一段平路(CDEF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點(diǎn)BBC、D同一水平線上),斜坡AB的坡度為21,且AB長(zhǎng)為900,其中小偉走平路的速度為65.7/分,走上坡路的速度為42.3/分.則小偉從C出發(fā)到坡頂A的時(shí)間為( 。▓D中所有點(diǎn)在同一平面內(nèi)1.41,1.73

A.60分鐘B.70分鐘C.80分鐘D.90分鐘

【答案】C

【解析】

如圖,作APBCP,延長(zhǎng)AHBCQ,延長(zhǎng)EFAQT.想辦法求出AQ、CQ即可解決問題.

解:如圖,作APBCP,延長(zhǎng)AHBCQ,延長(zhǎng)EFAQT

由題意:2AQAH+FG+DE,CQCD+EF+GH,∠AQP45°,

∵∠APB90°,AB900

PB900,PA1800,

∵∠PQA=∠PAQ45°,

PAPQ1800,AQPA1800,

∵∠C30°,

PCPA1800,

CQ18001800,

∴小偉從C出發(fā)到坡頂A的時(shí)間=80(分鐘),

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OEDE,點(diǎn)A、Dx軸的正半軸上,點(diǎn)Cy軸的正半軸上,點(diǎn)B、E在反比例函數(shù)y的圖象上,OA5,OC1,則△ODE的面積為( 。

A.2.5B.5C.7.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)黨的精準(zhǔn)扶貧政策,AB兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A、B城往C、D兩鄉(xiāng)運(yùn)肥料的平均費(fèi)用如下表. 現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260.

A()

B()

C鄉(xiāng)()

20/

15/

D鄉(xiāng)()

25/

30/

1A城和B城各多少噸肥料?

2)設(shè)從B城運(yùn)往D鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求yx之間的函數(shù)關(guān)系,并寫出自變量x的取值范圍;

3)由于更換車型,使B城運(yùn)往D鄉(xiāng)的運(yùn)費(fèi)每噸減少a(a0),其余路線運(yùn)費(fèi)不變,若C、D兩鄉(xiāng)的總運(yùn)費(fèi)最小值不少于10040元,求a的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是直線y+2與雙曲線y在第一象限內(nèi)的一個(gè)交點(diǎn),直線y+2x軸、y軸的交點(diǎn)分別為A、C,過PPBx軸,AB+PB9

1)求m的值;

2)在雙曲線上是否存在一點(diǎn)G,使得△ABG的面積等于△PBC的面積?若存在,求出點(diǎn)G的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).

1)求反比例函數(shù)的解析式;

2)當(dāng)y2y1時(shí),求x的取值范圍;

3)求點(diǎn)B到直線OM的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形中,點(diǎn)為靠近點(diǎn)的四等分點(diǎn),點(diǎn)中點(diǎn),將沿翻折得到連接則點(diǎn)所在直線距離為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。

A.ABCD,ADBCB.OAOC,OBOD

C.ADBC,ABCDD.ABCDADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,過點(diǎn)的切線,弦,交于點(diǎn),且弧,連接,延長(zhǎng)于點(diǎn)

1)求證:是等邊三角形;

2)若,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明主設(shè)計(jì)的作一個(gè)含30°角的直角三角形的尺規(guī)作圖過程.

已知:直線l

求作:ABC,使得∠ACB90°,∠ABC30°

作法:如圖,

①在直線l上任取兩點(diǎn)OA;

②以點(diǎn)O為圓心,OA長(zhǎng)為半徑畫弧,交直線l于點(diǎn)B;

③以點(diǎn)A為圓心,AO長(zhǎng)為半徑畫弧,交于點(diǎn)C;

④連接AC,BC

所以ABC就是所求作的三角形.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程:

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:在⊙O中,AB為直徑,

∴∠ACB90°(①  ),(填推理的依據(jù))

連接OC

OAOCAC,

∴∠CAB60°

∴∠ABC30°(②   ),(填推理的依據(jù))

查看答案和解析>>

同步練習(xí)冊(cè)答案