【題目】如圖,在中,,且

)求證:

)若,,中點,,分別交于點,

①判斷線段相等嗎?請說明理由.

②求證:

【答案】見解析

【解析】試題分析:(1)根據(jù)SAS證明△ABE≌△CBE,即可得結(jié)論;(2)①BH=AC,根據(jù)已知條件求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根據(jù)ASA證出△DBH≌△DCA,即可得結(jié)論②連接CG,AG,根據(jù)AB=BC,BE⊥AC,可得BE垂直平分AC,根據(jù)線段垂直平分線的性質(zhì)可得AG=CG,再由F點是BC的中點,DB=DC,可得DF垂直平分BC,所以BG=CG,即可得AG=BG,在Rt△AEG中,由勾股定理即可推出答案.

試題解析:

)證明:在中,

,

,

理由:∵,

,,

,,

中,

,

②證明:如圖,連接,,

,

垂直平分,

,

點是的中點,,

垂直平分,

,

中,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.

(1)求證:四邊形ABEF為菱形;

(2)AE,BF相交于點O,若BF=6,AB=5,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE分別是AB,AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連CF

(1)求證:四邊形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點,若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個公共點,則b的取值范圍是( 。

A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】)如圖中,,請用直尺和圓規(guī)作一條直線,把分割成兩個等腰三角形(不寫作法,但須保留作圖痕跡).

)如圖中,的三個內(nèi)角分別為,,,若,,在上找一個點,使為等腰三角形,求出的長(可用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,若動點從點開始,按的路徑運動一周,且速度為每秒,設(shè)運動的時間為秒.

)求為何值時,的周長分成相等的兩部分

)求為何值時,的面積分成相等的兩部分;并求此時的長.

)求為何值時,為等腰三角形?(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分在平面直角坐標(biāo)系中,O為原點,直線y =-2x1與y軸交點A,與直線y =x交點B點B關(guān)于原點的對稱點為點C

1求過A,B,C三點的拋物線解析式;

2P為拋物線上一點,它關(guān)于原點對稱點為Q

當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo)

若點P的橫坐標(biāo)為t1t1),當(dāng)t為何值時,四邊形PBQC面積最大,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的內(nèi)角和等于1260°,則從此多邊形一個頂點引出的對角線有( )

A. 4條 B. 5條 C. 6條 D. 7條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x、y是有理數(shù),設(shè)N=3x2+2y218x+8y+35,則N

A. 一定是負(fù)數(shù) B. 一定不是負(fù)數(shù) C. 一定是正數(shù) D. N的取值與x、y的取值有關(guān)

查看答案和解析>>

同步練習(xí)冊答案