【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10,這樣的數(shù)稱為三角形數(shù),而把14,9,16,這樣的數(shù)稱為正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1正方形數(shù)都可以看作兩個相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是(  )

A. 9=4+5B. C. D.

【答案】C

【解析】

本題先根據(jù)已知條件,得出三角數(shù)前面是13,6,1015,2128,依次差增加1,再從中找出規(guī)律,即可找出結(jié)果.

解:根據(jù)題目中的已知條件結(jié)合圖象可以得到三角形數(shù)是這樣的,
三角形數(shù)1,3,610,15,21,28,后面的數(shù)與前面的數(shù)的差依次增加1,
正方形數(shù) 1 ,4 ,9 ,16 ,25 ,36 ,49,
25=10+15,36=15+21,49=21+28
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列結(jié)論:①b2-4ac0;2ab04a-2bc=0;abc=-123.其中正確的是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,

(1)求證:△ACE≌△BCD;

(2)若DE=13,BD=12,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場甲、乙、丙三名業(yè)務員2018年前5個月的銷售額(單位:萬元)如下表:

1

2

3

4

5

9

9

8

7

5

10

9

6

8

8

11

10

5

5

9

(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:

平均數(shù)

(萬元)

眾數(shù)

(萬元)

中位數(shù)

(萬元)

7. 6

8

8

8

8

5

(2)甲、乙、丙三名業(yè)務員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,B=60°,MAB的中點.動點P在菱形的邊上從點B出發(fā),沿B→C→D的方向運動,到達點D時停止.連接MP,設點P運動的路程為x,MP 2=y,則表示yx的函數(shù)關系的圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.

1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)

2)在進入第二輪傳染之前,有兩位患者被及時隔離并治愈,問第二輪傳染后總共是否會有21人患病的情況發(fā)生,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一批日用品,若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)(件)與價格(元/件)之間滿足一次函數(shù)關系.

(1)試求:yx之間的函數(shù)關系式;

(2)這批日用品購進時進價為4元,則當銷售價格定為多少時,才能使每月的潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍ABBC兩邊),設AB=xm

1)若花園的面積為192m2,求x的值;

2)若在P處有一棵樹與墻CD,AD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求x取何值時,花園面積S最大,并求出花園面積S的最大值.

查看答案和解析>>

同步練習冊答案