【題目】如圖,已知AOB是一條直線,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90°.則
(1)∠AOC的補角是_____;
(2)____是∠AOC的余角;
(3)∠COF的補角是___.
【答案】 ∠COB ∠3,∠4 ∠AOE
【解析】
(1)根據(jù)互為補角的概念:和為180度的兩個角互為補角,即可回答.
(2)根據(jù)互為余角的概念:和為90度的兩個角互為余角,即可回答.
(3)根據(jù)已知,知∠3=∠4,再根據(jù)互為補角的概念即可回答.
根據(jù)題意和圖示可知:
(1)∠AOC+∠BOC=180°,則∠AOC的補角是∠COB;
(2)∠AOC+∠3=90°,∠3是∠AOC的余角,又∠3=∠4,∠4也是∠AOC的余角;
(3)∵∠COF+∠1+∠2+∠EOF+∠4=180°,
∴∠COF+∠AOE=180°,∠COF的補角是∠AOE.
故答案為:∠COB;∠3,∠4;∠AOE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條流水生產(chǎn)線上L1、L2、L3、L4、L5處各有一名工人在工作,現(xiàn)要在流水生產(chǎn)線上設(shè)置一個零件供應(yīng)站P,使五人到供應(yīng)站P的距離總和最小,這個供應(yīng)站設(shè)置的位置是( )
A. L2處 B. L3處 C. L4處 D. 生產(chǎn)線上任何地方都一樣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,上七年級的小貝在一張紙上畫了一條數(shù)軸,妹妹不知道它有什么用處,就在上面畫了一只小貓和一只小狗,于是數(shù)軸上標(biāo)的數(shù)字有的看不到了,請根據(jù)數(shù)軸回答下列問題:
(1)被小貓遮住的是正數(shù)還是負數(shù)?
(2)被小狗遮住的整數(shù)有幾個?
(3)此時小貓和小狗之間(即點A,B之間)的整數(shù)有幾個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點A順時針旋轉(zhuǎn)90°得到(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點),連接CC′,則∠CC′B′的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x交于A(﹣1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E、F,則線段B′F的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知C是AB的中點,D是AC的中點,E是BC的中點.
(1)若AB=18cm,求DE的長;(2)若CE=5cm,求DB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E
(1)求A、B的坐標(biāo);
(2)求直線BC的解析式;
(3)當(dāng)線段DE的長度最大時,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1的坐標(biāo)為(1,0),A2在y軸的正半軸上,且∠A1A2O=30°,過點A2作A2A3⊥A1A2,垂足為A2,交x軸于點A3;過點A3作A3A4⊥A2A3,垂足為A3,交y軸于點A4;過點A4作A4A5⊥A3A4,垂足為A4,交x軸于點A5……按此規(guī)律進行下去,則點A3的坐標(biāo)為________,點A2017的橫坐標(biāo)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com