已知,如圖,直角坐標系內的矩形ABCD,頂點A的坐標為(0,3),BC=2AB,P為AD邊上一動點(與點A、D不重合),以點P為圓心作⊙P與對角線AC相切于點F,過P、F作直線L,交BC邊于點E,當點P運動到點P1位置時,直線L恰好經(jīng)過點B,此時直線的解析式是y=2x+1.
(1)求BC、AP1的長;
(2)設AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關系式,寫出自變量m的取值范圍;
(3)以點E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P和⊙E有哪幾種位置關系,并求出AP相應的取值范圍;
②當直線L把矩形ABCD分成兩部分的面積之比值為3:5時,則⊙P和⊙E的位置關系如何并說明理由.

解:(1)BC=4,AP1=1.y=2x+1,可以求出B(0,1),P1(1,3),AB=3-1=2,BC=2AB=4,AP1=1;

(2)S=9-2m;
∵1≤m<4,
∴PD=4-m,EC=4-m+1=5-m,CD=2,
∴S=0.5(4-m+5-m)×2=9-2m(1≤m<4);

(3)①在RT△ABP1中,
∵AB=2,AP1=1,
∴BP1=,點P在AD上運動時,PF=PE-EF=-1,
當⊙P和⊙E相切時,PF=PE-EF=-1;
∵RT△APF∽RT△ACD,
∴AP:AC=PF:CD,
∴AP=5
∴當1≤m<5時,兩圓外離,
當m=5時,兩圓外切,
當5<m<4時,兩圓相交.
②外離或相交.理由如下:
∵矩形ABCD的面積是8,且直線L把矩形ABCD分成兩部分的面積之比值為3:5,
∴S四邊形PECD=5或者S四邊形PECD=3,
當S四邊形PECD=5時,9-2m=5,m=2,即AP=2,
∴1≤AP<5,
∴此時兩圓外離.
當S四邊形PECD=3時,9-2m=3,m=3,即AP=3,
∴5<AP<4,
∴此時兩圓相交.
分析:(1)求BC、AP1的長,因為BC=2AB,可以根據(jù)直線的解析式是y=2x+1,確定B、P1的坐標,得出AB的距離,從而求出;
(2)根據(jù)梯形PECD的面積公式求出PD、EC、CD的長,從而求出S與m之間的函數(shù)關系式,及自變量m的取值范圍;
(3)根據(jù)圓與圓的位置關系,圓心距>兩圓的半徑時外離,圓心距=兩圓的半徑時相切,圓心距<兩圓的半徑時相交,求出AP相應的取值范圍,確定⊙P和⊙E的位置關系.
點評:本題綜合考查了函數(shù)解析式,及直線與圓、圓與圓的位置關系.圓與圓的位置關系有:相離(外離,內含),相交、相切(外切、內切),直線和圓的位置關系有:相交、相切、相離,所以這樣一來,我們在分析過程中不能忽略所有的可能情況.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖(1),在平面直角坐標xOy中,邊長為2的等邊△OAB的頂點B在第一象限,頂點A在x軸的正半軸上.另一等腰△OCA的頂點C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標;
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(0°<旋轉角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年湖北省荊州市江陵縣五三中學九年級(上)期末數(shù)學模擬試卷5(解析版) 題型:解答題

已知:如圖(1),在平面直角坐標xOy中,邊長為2的等邊△OAB的頂點B在第一象限,頂點A在x軸的正半軸上.另一等腰△OCA的頂點C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標;
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(0°<旋轉角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年重慶市涪陵二中中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

已知:如圖(1),在平面直角坐標xOy中,邊長為2的等邊△OAB的頂點B在第一象限,頂點A在x軸的正半軸上.另一等腰△OCA的頂點C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標;
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(0°<旋轉角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年5月中考數(shù)學模擬試卷(48)(解析版) 題型:解答題

已知:如圖(1),在平面直角坐標xOy中,邊長為2的等邊△OAB的頂點B在第一象限,頂點A在x軸的正半軸上.另一等腰△OCA的頂點C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標;
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(0°<旋轉角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(12)(解析版) 題型:解答題

(2010•重慶)已知:如圖(1),在平面直角坐標xOy中,邊長為2的等邊△OAB的頂點B在第一象限,頂點A在x軸的正半軸上.另一等腰△OCA的頂點C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標;
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(0°<旋轉角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.

查看答案和解析>>

同步練習冊答案