【題目】如圖,O是平面直角坐標(biāo)系的原點(diǎn).在四邊形OABC中,AB∥OC,BC⊥x軸于C,A(1,1),B(3,1),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以2個(gè)單位/秒的速度運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2).
(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線的解析式;
(2)過(guò)P作PD⊥OA于D,以點(diǎn)P為圓心,PD為半徑作⊙P,⊙P在點(diǎn)P的右側(cè)與x軸交于點(diǎn)Q.
①則P點(diǎn)的坐標(biāo)為_____,Q點(diǎn)的坐標(biāo)為_____;(用含t的代數(shù)式表示)
②試求t為何值時(shí),⊙P與四邊形OABC的兩邊同時(shí)相切;
③設(shè)△OPD與四邊形OABC重疊的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)解析式.
【答案】 (2t,0) ((2+)t,0)
【解析】分析:(1)利用待定系數(shù)法即可得出結(jié)論;
(2)①先用含t的代數(shù)式表示出OP,再利用銳角三角函數(shù)表示出PD,進(jìn)而表示出OQ即可得出結(jié)論;
②分⊙P與AB相切時(shí),⊙P與BC相切時(shí)兩種情況,利用直線和圓相切的性質(zhì)建立方程求解即可;
③分0<t≤1,1<t≤,<t<2三種情況,利用幾何圖形的面積公式即可得出結(jié)論.
詳解:(1)因?yàn)閽佄锞經(jīng)過(guò)原點(diǎn)O,所以設(shè)拋物線解析式為y=ax2+bx.
又因?yàn)閽佄锞經(jīng)過(guò)A(1,1),B(3,1),
所以有解得,
所以拋物線解析式為y=﹣x2+x
(2)①由運(yùn)動(dòng)知,OP=2t,
∴P(2t,0),
∵A(1,1),
∴∠AOC=45°,
∵PD⊥OA,
∴PD=OPsin∠AOC=t,
∵PD為半徑作⊙P,⊙P在點(diǎn)P的右側(cè)與x軸交于點(diǎn)Q,
∴PQ=PD=t,
∴OQ=OP+PQ=2t+t=(2+)t
∴Q((2+)t,0),
故答案為(2t,0),((2+)t,0);
②當(dāng)⊙P與AB相切時(shí), t=1,所以t=;
當(dāng)⊙P與BC相切時(shí),即點(diǎn)Q與點(diǎn)C重合,所以(2+)t=3,解得t=.
(3)①當(dāng)0<t≤1,如圖1,重疊部分的面積是S△OPQ,
過(guò)點(diǎn)A作AF⊥x軸于點(diǎn)F,
∵A(1,1),
在Rt△OAF中,AF=OF=1,∠AOF=45°,
在Rt△OPQ中,
∴PQ=OQ=2tcos45°=t,
∴S=(t)2=t2,
②當(dāng)1<t≤,如圖2,設(shè)PQ交AB于點(diǎn)G,
作GH⊥x軸于點(diǎn)H,∠OPQ=∠QOP=45°,
則四邊形OAGP是等腰梯形,PH=GH=AF=1,
重疊部分的面積是S梯形OAGP.
∴AG=FH=OP﹣PH﹣OF=2t﹣2,
∴S=(AG+OP)AF=(2t+2t﹣2)×1=2t﹣1.
③當(dāng)<t<2,如圖3,設(shè)PQ與AB交于點(diǎn)M,交BC于點(diǎn)N,
重疊部分的面積是S五邊形OAMNC.
因?yàn)椤?/span>PNC和△BMN都是等腰直角三角形,
所以重疊部分的面積是S五邊形OAMNC=S梯形OABC﹣S△BMN.
∵B(3,1),OP=2t,
∴CN=PC=OP﹣OC=2t﹣3,
∴BM=BN=1﹣(2t﹣3)=4﹣2t,
∴S=(2+3)×1﹣(4﹣2t)2=﹣2t2+8t﹣.
即:S=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,直線y=x+1與雙曲線的一個(gè)交點(diǎn)為P(m,6).
(1)求k的值;
(2)M(2,a),N(n,b)分別是該雙曲線上的兩點(diǎn),直接寫(xiě)出當(dāng)a>b時(shí),n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:解分式不等式<0
解:根據(jù)實(shí)數(shù)的除法法則:同號(hào)兩數(shù)相除得正數(shù),異號(hào)兩數(shù)相除得負(fù)數(shù),因此,原不等式可轉(zhuǎn)化為:
①或②
解①得:無(wú)解,解②得:﹣2<x<1
所以原不等式的解集是﹣2<x<1
請(qǐng)仿照上述方法解下列分式不等式:(1)>0;(2)<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項(xiàng),得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯(cuò)誤變形的個(gè)數(shù)是( )個(gè).
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘貨輪位于O地,發(fā)現(xiàn)燈塔A在它的正北方向上,這艘貨輪沿正東方向航行50千米,到達(dá)B地,此時(shí)用雷達(dá)測(cè)得燈塔A與貨輪的距離為100千米.
(1)在圖中作出燈塔A的位置,并作射線BA;
(2)以正北,正南方向?yàn)榛鶞?zhǔn),借助量角器,描述燈塔A在B地的什么方向上(精確到1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面上四個(gè)點(diǎn).
(1)按下列要求畫(huà)圖(不寫(xiě)畫(huà)法)
①連接,;②作直線;③作射線,交于點(diǎn).
(2)在(1)所畫(huà)的圖形中共有__________條線段,__________條射線. (所畫(huà)圖形中不能再添加標(biāo)注其他字母);
(3)通過(guò)測(cè)量線段,,,可知__________(填“”,“”或“”),可以解釋這一現(xiàn)象的基本事實(shí)為:_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某市民健身廣場(chǎng)的平面示意圖,它是由6個(gè)正方形拼成的長(zhǎng)方形,已知中間最小的正方形的邊長(zhǎng)是1米;
(1)若設(shè)圖中最大正方形的邊長(zhǎng)是米,請(qǐng)用含的代數(shù)式分別表示出正方形的邊長(zhǎng)
(2)觀察圖形的特點(diǎn)可知,長(zhǎng)方形相對(duì)的兩邊是相等的(即, )請(qǐng)根據(jù)以上結(jié)論,求出的值
(3)現(xiàn)沿著長(zhǎng)方形廣場(chǎng)的四條邊鋪設(shè)下水管道,由甲、乙工程隊(duì)單獨(dú)鋪設(shè)分別需要10天、15天完成,如果兩隊(duì)從同一位置開(kāi)始,沿相反的方向同時(shí)施工2天后,因甲隊(duì)另有任務(wù),余下的工程由乙隊(duì)單獨(dú)施工,還要多少天完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果m<n<0,那么下列式子中錯(cuò)誤的是( )
A. m-9<n-9 B. -m>-n C. < D. >1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的“漢字聽(tīng)寫(xiě)”大賽.各參賽選手成績(jī)的數(shù)據(jù)分析如下表所示,則以下判斷錯(cuò)誤的是( 。
A. 八(2)班的總分高于八(1)班 B. 八(2)班的成績(jī)比八(1)班穩(wěn)定
C. 八(2)班的成績(jī)集中在中上游 D. 兩個(gè)班的最高分在八(2)班
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com