【題目】如圖,在ABC中,CDAB,垂足為D,點EBC上,EFAB,垂足為F

1)求證: CDEF

2)如果∠1=2,且∠3=115°,求∠ACB的度數(shù)

3)若BC=6cm,ABC的面積是12cm2 ,則點A到直線BC的距離是多少?

【答案】1)見解析;(2115°;(34cm.

【解析】

1)根據(jù)CDAB,EFAB可得∠CDB =EFB=90°,然后根據(jù)平行線的判定定理可得CDEF;

2)先根據(jù)平行線的判定和性質證明DGBC,即可得到∠ACB=3=115°;

3)根據(jù)三角形面積計算方法即可求出點A到直線BC的距離.

證明:(1 CDAB,EFAB (已知)

∴∠CDB =EFB=90°

CDEF

2 CDEF

∴∠DCB=2

∵∠1=2

∴∠1=DCB

DGBC

∴∠ACB=3=115°

3)設所求距離為h,則由

解得 h=4

∴點A到直線BC的距離是4cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的周長為相交于點,,則的周長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老王的房子準備開始裝修,請來師徒二人做泥水.已知師傅單獨完成需10天,徒弟單獨完成需15天。

(1)若兩人先合作2天,剩下的由徒弟單獨做,結果超出老王預期的工期3天完成,求老王預期的工期天數(shù);

(2)若師傅的工價每天300元,徒弟的工價每天220元,老王房子的泥水工價預算不超過3180元,問師傅至少要做幾天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 為線段上一動點(不與點重合),在同側分別作正三角形和正三角形,交于點交于點,交于點,連接,以下五個結論:①,②,③,④,⑤,一定成立的是( )

A.①②③④

B.①②④⑤

C.①②③⑤

D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為( 。

A. 14cm B. 17cm C. 20cm D. 23cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE是∠ABD的平分線,CF是∠ACD的平分線,BECF交于G,若∠BDC=140°,BGC=110°,則∠A__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級1班體育委員統(tǒng)計了全班同學60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:

次數(shù)

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

頻數(shù)

a

4

12

16

8

3

結合圖表完成下列問題:

(1)a=   

(2)補全頻數(shù)分布直方圖;

(3)寫出全班人數(shù)是   ,并求出第三組“120≤x<140”的頻率(精確到0.01)

(4)若跳繩次數(shù)不少于140的學生成績?yōu)閮?yōu)秀,則優(yōu)秀學生人數(shù)占全班總人數(shù)的百分之幾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O為平面直角坐標系的原點,點A坐標為(40),同時將點AO分別向上平移2個單位,再向左平移1個單位,得到對應點B,C

1)求四邊形OABC的面積;

2)在y軸上是否存在一點M,使MOA的面積與四邊形OABC的面積相等?若存在這樣一點,求出點M的坐標,若不存在,請說明理由;

3)如圖2,點POA邊上,且∠CBP=CPBQAO延長線上一動點,∠PCQ的平分線CDBP的延長線于點D,在點Q運動的過程中,求∠D和∠CQP的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸相交于兩點A10),B3,0),與y軸相交于點C03).

1)求拋物線的函數(shù)關系式.

2)將y=ax2+bx+c化成y=ax﹣m2+k的形式(請直接寫出答案).

3)若點D3.5,m)是拋物線y=ax2+bx+c上的一點,請求出m的值,并求出此時ABD的面積.

查看答案和解析>>

同步練習冊答案