如圖在△ABC中,AB=AC,D為BC邊上一點,∠B=30°,∠DAB=45°.
(1)求∠DAC的度數(shù).
(2)試說明DC=AB.
(1)解:∵AB=AC,
∴∠B=∠C=30°,
∵∠C+∠BAC+∠B=180°,
∴∠BAC=180°-30°-30°=120°,
∵∠DAB=45°,
∴∠DAC=∠BAC-∠DAB=120°-45°=75°;
(2)證明:∵∠DAB=45°,
∴∠ADC=∠B+∠DAB=75°,
∴∠DAC=∠ADC,
∴DC=AC,
∴DC=AB.
【解析】(1)由AB=AC,根據(jù)等腰三角形的兩底角相等得到∠B=∠C=30°,再根據(jù)三角形的內(nèi)角和定理可計算出∠BAC=120°,而∠DAB=45°,則∠DAC=∠BAC-∠DAB=120°-45°;
(2)根據(jù)三角形外角性質(zhì)和得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根據(jù)等腰三角形的判定可得DC=AC,這樣即可得到結(jié)論.
科目:初中數(shù)學 來源: 題型:
1 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com