【題目】如圖,某人為了測(cè)量小山頂上的塔ED的高,他在山下的點(diǎn)A處測(cè)得塔尖點(diǎn)D的仰角為45°,再沿AC方向前進(jìn)60m到達(dá)山腳點(diǎn)B,測(cè)得塔尖點(diǎn)D的仰角為60°,塔底點(diǎn)E的仰角為30°,求塔ED的高度.(結(jié)果保留根號(hào))
【答案】解:由題知,∠DBC=60°,∠EBC=30°,
∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.
又∵∠BCD=90°,
∴∠BDC=90°﹣∠DBC=90°﹣60°=30°.
∴∠DBE=∠BDE.
∴BE=DE.
設(shè)EC=x,則DE=BE=2EC=2x,DC=EC+DE=x+2x=3x,
BC= = = x,
由題知,∠DAC=45°,∠DCA=90°,AB=20,
∴△ACD為等腰直角三角形,
∴AC=DC.
∴ x+60=3x,
解得:x=30+10 .
答:塔高約為30+10 m.
【解析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后設(shè)EC=x,則BE=2x,DE=2x,DC=3x,BC= x,然后根據(jù)∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.
【考點(diǎn)精析】本題主要考查了關(guān)于仰角俯角問(wèn)題的相關(guān)知識(shí)點(diǎn),需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為6的⊙O內(nèi)有兩條互相垂直的弦AB和CD,AB=8,CD=6,垂足為E.則tan∠OEA的值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】位于張家界核心景區(qū)的賀龍銅像,是我國(guó)近百年來(lái)最大的銅像.銅像由像體AD和底座CD兩部分組成.如圖,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像體AD的高度(最后結(jié)果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.
已知拋物線y=﹣ x2﹣ x+2 與其“夢(mèng)想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“夢(mèng)想直線”的解析式為 , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“夢(mèng)想三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“夢(mèng)想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式: 第一個(gè)等式:
第二個(gè)等式:
第三個(gè)等式:
第四個(gè)等式:
按上述規(guī)律,回答下列問(wèn)題:
(1)請(qǐng)寫出第六個(gè)等式:a6==;
(2)用含n的代數(shù)式表示第n個(gè)等式:an==;
(3)a1+a2+a3+a4+a5+a6=(得出最簡(jiǎn)結(jié)果);
(4)計(jì)算:a1+a2+…+an .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地某個(gè)季度的氣溫情況,用適當(dāng)?shù)某闃臃椒◤脑摰剡@個(gè)季度中抽取30天,對(duì)每天的最高氣溫x(單位:℃)進(jìn)行調(diào)查,并將所得的數(shù)據(jù)按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五組,得到如圖頻數(shù)分布直方圖.
(1)求這30天最高氣溫的平均數(shù)和中位數(shù)(各組的實(shí)際數(shù)據(jù)用該組的組中值代表);
(2)每月按30天計(jì)算,各組的實(shí)際數(shù)據(jù)用該組的組中值代表,估計(jì)該地這個(gè)季度中最高氣溫超過(guò)(1)中平均數(shù)的天數(shù);
(3)如果從最高氣溫不低于24℃的兩組內(nèi)隨機(jī)選取兩天,請(qǐng)你直接寫出這兩天都在氣溫最高一組內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c的開口向上,且經(jīng)過(guò)點(diǎn)A(0, )
(1)若此拋物線經(jīng)過(guò)點(diǎn)B(2,﹣ ),且與x軸相交于點(diǎn)E,F(xiàn).
①填空:b=(用含a的代數(shù)式表示);
(2)若a= ,當(dāng)0<x<1,拋物線上的點(diǎn)到x軸距離的最大值為3時(shí),求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”,已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個(gè)“果圓”被y軸截得線段CD的長(zhǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com