(本題滿分10分)已知:如圖,的直徑,上一點,CDAB,垂足為點 的中點,相交于點,8 cm,cm.

小題1:(1)求的長;
小題2:(2)求的值.

小題1:
小題2:

分析:(1)由F是的中點,根據(jù)垂徑定理的推論,得到OF⊥AC,AE=CE=4,在Rt△AEO中,利用勾股定理即可計算出OA;
(2)由CD⊥AB,利用同角的余角相等得到∠AOE=∠C,所以sinC=sin∠AOE,在Rt△AEO中,即可得到sin∠AOE的值.
解:(1)∵F是的中點,
=
又OF是半徑,
∴OF⊥AC,
∴AE=CE,
∵AC=8cm,
∴AE=4cm,
在Rt△AEO中,AE2+EO2=AO2,
又∵EF=2cm,
∴42+(AO-2)2=AO2,解得AO=5,
∴AO=5cm.
(2)∵OE⊥AC,
∴∠A+∠AOE=90°,
∵CD⊥AB,
∴∠A+∠C=90°,(1分)
∴∠AOE=∠C,
∴sinC=sin∠AOE,
∵sin∠AOE==,
∴sinC=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB、AC、BD是⊙O的切線,P、C、D為切點,如果AB=5,AC=3,則BD的長為___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直徑為10的⊙A經(jīng)過點C (0,5) 和點O (0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC 的正弦值為(     )  
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點A、B、C在⊙O上,∠COA=100°,則∠CBA的度數(shù)是(    ).
A.50°    B.80°     C.100°     D.200°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,半徑為6的圓中,弦AB垂直平分半徑OC,則弦AB的長為 _________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是在紙上剪下的一個圓形和一個扇形的紙片,若它們恰好能圍成一個圓錐模型,圓的半徑為,扇形的半徑為,扇形的圓心角等于90°,則與R之間的關(guān)系是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若⊙O1和⊙O2相交于點A、B,且AB=24,⊙O1的半徑為13,⊙O2的半徑15,則O1O2的長為__________或__________.(有兩解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點P在⊙O內(nèi),OP = 2cm,若⊙O的半徑是3cm,則過點P的最短弦的長度為(   。
A.1cmB.2cmC.cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以的直角邊為直徑的半圓,與斜邊交于,邊上的中點. 連結(jié),. 試問與半圓相切嗎?若相切,請給出證明;若不相切,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案