【題目】先閱讀短文,然后回答短文后面所給出的問題:
對于三個數(shù)a、b、c的平均數(shù),最小的數(shù)都可以給出符號來表示,我們規(guī)定M{a,b,c}表示a,b,c這三個數(shù)的平均數(shù),min{a,b,c}表示a,b,c這三個數(shù)中最小的數(shù),max{a,b,c}表示a,b,c這三個數(shù)中最大的數(shù).例如:M{﹣1,2,3}=,min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a}=,min{﹣1,2,a}=.
(1)請?zhí)羁眨?/span>max{c﹣1,c,c+1}= ;若m<0,n>0,min{3m,(n+3)m,﹣mn}= ;
(2)若min{2,2x+2,4﹣2x}=2,求x的取值范圍;
(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.
【答案】(1)c+1,(n+3)m;(2)0≤x≤1;(3)x=1.
【解析】
(1)三個數(shù)c-1,c,c+1最大的數(shù)是c+1,三個數(shù)3m,(n+3)m,-mn中,m<0,n>0,最小的數(shù)是(n+3)m;
(2)三個數(shù)2,2x+2,4-2x中最小的數(shù)是2;
(3)三個數(shù)2,x+1,2x的平均數(shù)與最小數(shù)相等.
解:(1)max{c-1,c,c+1}=c+1.
∵m<0,n>0,
∴3m<0,(n+3)m=mn+3m<0,-mn>0,
∴-mn>3n>(n+3)m,
∴min{3m,(n+3)m,-mn}=(n+3)m.
故答案是:c+1,(n+3)m;
(2)根據(jù)題意得:
解得 0≤x≤1.
(3) =1+x,
則2<x+1<2x或2x<x+1<2.
①當(dāng)2<x+1<2x時,依題意得
1+x=2,
解得 x=1;
②當(dāng)2x<x+1<2時,依題意得
1+x=2x,
解得x=1.
綜上所述,x=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,小彬從該網(wǎng)店購買了3筒甲種羽毛球和2筒乙種羽毛球,一共花費(fèi)270元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?
(2)根據(jù)消費(fèi)者需求,該網(wǎng)店決定購進(jìn)甲、乙兩種羽毛球各80筒.已知甲種羽毛球每筒的進(jìn)價(jià)為50元,乙種羽毛球每筒的進(jìn)價(jià)為40元.元旦期間該網(wǎng)店開展優(yōu)惠促銷活動,甲種羽毛球打折銷售,乙種羽毛球售價(jià)不變,若所購進(jìn)羽毛球均可全部售出,要使全部售出所購進(jìn)的羽毛球的利潤率是,那么甲種羽毛球是按原銷售價(jià)打幾折銷售的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正比例函數(shù) 的圖象與反比例函數(shù) 在第一象限的圖象交于點(diǎn) ,過點(diǎn) 作 軸的垂線,垂足為 ,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果點(diǎn) 為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn) 與點(diǎn) 不重合),且點(diǎn) 的橫坐標(biāo)為1,在 軸上求一點(diǎn) ,使 最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決問題:
一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.
(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.
(2)小明家距小彬家多遠(yuǎn)?
(3)貨車一共行駛了多少千米?
(4)貨車每千米耗油0.2升,這次共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長線、DC的延長線于點(diǎn)G,H,交BD于點(diǎn)O.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)﹣﹣(+13)+(﹣)﹣(﹣17)
(2)﹣22+3÷(﹣1)2017﹣|﹣4|×5
(3)先化簡再求值﹣3(2x2﹣xy)+4(x2+xy﹣6),其中x=﹣1,y=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (k≠0)與一次函數(shù)y=kx+k(k≠0)在同一平面直角坐標(biāo)系內(nèi)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)3x3x9﹣2xx3x8
(2)﹣12+20160+()2017×(﹣4)2018
(3)(x+4)(x﹣4)﹣(x﹣2)2
(4)ab(a+b)﹣(a﹣b)(a2+b2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com