【題目】如圖,正方形中,邊的中點,點是正方形內一動點,,連接,將線段繞點逆時針旋轉,連接,.則線段長的最小值( )

A. B. C. D.

【答案】D

【解析】

連接DO,將線段DO繞點D逆時針旋轉90°DM,連接OFFM,OM,證明EDO≌△FDM,可得FM=OE=2,由條件可得OM=5,根據OF+MF≥OM,即可得出OF的最小值.

如圖,連接DO,將線段DO繞點D逆時針旋轉90°DM,連接OF,FM, OM,

∵∠EDF=ODM=90°,
∴∠EDO=FDM,
DE=DF,DO=DM,
∴△EDO≌△FDMSAS),
FM=OE=2,
∵正方形ABCD中,AB=2,OBC邊的中點,

,

,
OF+MF≥OM,
OF≥
故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,O為坐標原點,直線y=﹣x+4x軸于點C,交y軸于點A,過AC兩點的拋物線yax2+bx+4x軸負半軸于點B,且tanBAO

1)求拋物線的解析式;

2)已知E、F是線段AC上異于AC的兩個點,且AEAFEF2,D為拋物線上第一象限內一點,且DEDF,設點D的橫坐標為m,DEF的面積為S,求Sm的函數(shù)關系式(不要求寫出自變量m的取值范圍);

3)在(2)的條件下,當∠EDF90°時,連接BD,P為拋物線上一動點,過PPQBD交線段BD于點Q,連接EQ.設點P的橫坐標為t,求t為何值時,PEQE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線x軸,y軸分別交于AB兩點,點為直線上一點,直線過點C

mb的值;

直線x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動設點P的運動時間為t秒.

①若點P在線段DA上,且的面積為10,求t的值;

②是否存在t的值,使為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲可在方格A、BC中移動,第二層有兩枚固定不動的黑色方塊第三層有一枚黑色方塊乙可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構成各種拼圖

(1)若乙固定在E,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是多少;

(2)若甲、乙均可在本層移動,用畫樹狀圖法或列表法求出黑色方塊所構成拼圖是軸對稱圖形的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD為兩個建筑物,建筑物AB的高度為100米,從建筑物AB的頂點A處測得建筑物CD的頂部C處的俯角∠EAC30°,測得建筑物CD的底部D處的俯角∠EAD45°.

1)求兩建筑物底部之間水平距離BD的長度;

2)求建筑物CD的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把邊長為cm的等邊剪成四部分,從三角形三個頂點往下bcm處,呈30°角下剪刀,使中間部分形成一個小的等邊.若的面積是,則的值為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一動點從半徑為2上的點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;接著又從點出發(fā),沿著射線方向運動到上的點處,再向左沿著與射線夾角為的方向運動到上的點處;間的距離是________;…按此規(guī)律運動到點處,則點與點間的距離是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A-2,3)關于y軸的對稱點為點B,連接AB,反比例函數(shù)y=x0)的圖象經過點B,過點BBCx軸于點C,點P是該反比例函數(shù)圖象上任意一點.

1)求k的值;

2)若△ABP的面積等于2,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于,兩點,交軸于點.直線經過點

1)求拋物線的解析式;

2)過點的直線交直線于點

①當時,過拋物線上一動點(不與點,重合),作直線的平行線交直線于點,若以點,,為頂點的四邊形是平行四邊形,求點的橫坐標;

②連接,當直線與直線的夾角等于倍時,請直接寫出點的坐標.

查看答案和解析>>

同步練習冊答案