【題目】如圖,中,點是邊上一個動點,過作直線,設(shè)交的平分線于點,交的平分線于點.
探究:線段與的數(shù)量關(guān)系并加以證明;
當(dāng)點運動到何處時,且滿足什么條件時,四邊形是正方形?
當(dāng)點在邊上運動時,四邊形________是菱形嗎?(填“可能”或“不可能”)
【答案】(1)OE=OF;(2)當(dāng)點O運動到AC的中點,且△ABC滿足∠ACB為直角的直角三角形時,四邊形AECF是正方形;(3)不可能.
【解析】
(1)由直線MN∥BC,MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F,易證得△OEC與△OFC是等腰三角形,則可證得OE=OF=OC;
(2)正方形的判定問題,AECF若是正方形,則必有對角線OA=OC,所以O為AC的中點,同樣在△ABC中,當(dāng)∠ACB=90°時,可滿足其為正方形;
(3)菱形的判定問題,若是菱形,則必有四條邊相等,對角線互相垂直.
(1)OE=OF.理由如下:
∵CE是∠ACB的角平分線,∴∠ACE=∠BCE.
又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC.
∵OF是∠BCA的外角平分線,∴∠OCF=∠FCD.
又∵MN∥BC,∴∠OFC=∠ECD,∴∠OFC=∠COF,∴OF=OC,∴OE=OF;
(2)當(dāng)點O運動到AC的中點,且△ABC滿足∠ACB為直角的直角三角形時,四邊形AECF是正方形.理由如下:
∵當(dāng)點O運動到AC的中點時,AO=CO.
又∵EO=FO,∴四邊形AECF是平行四邊形.
∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四邊形AECF是矩形.
已知MN∥BC,當(dāng)∠ACB=90°,則
∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四邊形AECF是正方形;
(3)不可能.理由如下:
如圖,連接BF.
∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四邊形BCFE是菱形,則BF⊥EC,但在△GFC中,不可能存在兩個角為90°,所以四邊形BCFE不能是菱形.
故答案為:不可能.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知點D在線段AB的反向延長線上,過AC的中點F作線段GE交∠DAC的平分線于E,交BC于G,且AE∥BC.
(1)求證:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PC交AB于點E,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)若∠APC=3∠BPC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延長線于E,若CE=5cm,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點為上一點,將沿翻折后點恰好落在邊上的點處,過作于,交于,連接.
求證:四邊形是菱形;
若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為美化校園,準(zhǔn)備在長35米,寬20米的長方形場地上,修建若干條寬度相同的道路,余下部分作草坪,并請全校學(xué)生參與方案設(shè)計,現(xiàn)有3位同學(xué)各設(shè)計了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).
請你根據(jù)這一問題,在每種方案中都只列出方程不解.
①甲方案設(shè)計圖紙為圖l,設(shè)計草坪的總面積為600平方米.
②乙方案設(shè)計圖紙為圖2,設(shè)計草坪的總面積為600平方米.
③丙方案設(shè)計圖紙為圖3,設(shè)計草坪的總面積為540平方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(x,0),B(0,y),且x,y滿足,且點A與點C關(guān)于y軸對稱.
(1)求C坐標(biāo);
(2)如圖1,點D在射線BA上,連接CD,若b=4,∠D=∠CBA,求CD長
(3)如圖2,如圖2,BC=2OC,點Q是平面內(nèi)一點,連接 QB,QC,QA,若QB=m,QC=OA,求AQ最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給的網(wǎng)格圖中,完成下列各題(用直尺畫圖,否則不給分)
(1)畫出格點△ABC關(guān)于直線DE的對稱的△A1B1C1;
(2)在DE上畫出點P,使PA+PC最小;
(3)在DE上畫出點Q,使QA﹣QB最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com