【題目】如圖,已知,,則下列結論: ①; ②;③點P在的平分線上,其中正確的是()
A.只有①B.只有②C.只有①②D.①②③
【答案】D
【解析】
根據(jù)ABAE=ACAD可判斷①;證△ABD≌△ACE,推出∠B=∠C,根據(jù)AAS證明△BPE≌△CPD即可判斷②;連接AP,根據(jù)△BPE≌△CPD推出BP=CP,根據(jù)SAS證△ABP≌△ACP,推出∠1=∠2即可判斷③.
解:∵AB=AC,AD=AE,
∴ABAE=ACAD,
∴EB=DC,①正確;
∵在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴∠B=∠C,
在△BPE和△CPD中,,
∴△BPE≌△CPD(AAS),②正確;
如圖,連接AP,
∵△BPE≌△CPD,
∴BP=CP,
在△ABP和△ACP中,,
∴△ABP≌△ACP(SAS),
∴∠1=∠2,
∴點P在∠BAC的角平分線上,③正確;
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為10的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合).
(Ⅰ)如圖1,若點Q是BC邊上一動點,與點P同時以相同的速度由C向B運動(與C、B不重合).求證:BP=AQ;
(Ⅱ)如圖2,若Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D,在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一種折疊式可調節(jié)的魚竿支架的示意圖,AE是地插,用來將支架固定在地面上,支架AB可繞A點前后轉動,用來調節(jié)AB與地面的夾角,支架CD可繞AB上定點C前后轉動,用來調節(jié)CD與AB的夾角,支架CD帶有伸縮調節(jié)長度的伸縮功能,已知BC=60cm.
(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚竿DB垂直,釣魚竿DB與地面AF平行,則支架CD的長度為 cm(精確到0.1cm);(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如圖2,保持(1)中支架AB與地面的夾角不變,調節(jié)支架CD與AB的夾角,使得∠DCB=85°,若要使釣魚竿DB與地面AF仍然保持平行,則支架CD的長度應該調節(jié)為多少?(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用配方法求出拋物線的頂點坐標、對稱軸、最大值或最小值;若將拋物線先向左平移個單位,再向上平移個單位,所得拋物線的函數(shù)關系式為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與兩坐標軸分別交于,,三點,一次函數(shù)的圖象與拋物線交于,兩點.
求點,,的坐標;
當兩函數(shù)的函數(shù)值都隨著的增大而增大,求的取值范圍;
當自變量滿足什么范圍時,一次函數(shù)值大于二次函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某人在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i為1∶,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥HC.則A,B兩點間的距離是( )
A. 15米 B. 20米 C. 20米 D. 10米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解下列各題:
(1)先化簡,再求代數(shù)式(的值,其中x=cos30°+;
(2)已知α是銳角,且sin(α+15°)=.計算-4cosα-(π-3.14)0+tanα+()-1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2-2x-3的圖象與x軸交于A,B兩點,與y軸交于點C,連接BC,點D為拋物線的頂點,點P是第四象限的拋物線上的一個動點(不與點D重合).
(1)求∠OBC的度數(shù);
(2)連接CD,BD,DP,延長DP交x軸正半軸于點E,且S△OCE=S四邊形OCDB,求此時P點的坐標;
(3)過點P作PF⊥x軸交BC于點F,求線段PF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,以AC為斜邊向外作等腰直角三角形COA,已知BC=8,OB=10,則另一直角邊AB的長為__________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com