【題目】在平面直角坐標(biāo)系中,如圖1,將n個(gè)邊長為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上,設(shè)拋物線y=ax2+bx+c(a<0)過矩形頂點(diǎn)B、C.
(1)當(dāng)n=1時(shí),如果a=﹣1,試求b的值;
(2)當(dāng)n=2時(shí),如圖2,在矩形OABC上方作一邊長為1的正方形EFMN,使EF在線段CB上,如果M,N兩點(diǎn)也在拋物線上,求出此時(shí)拋物線的解析式;
(3)將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使得點(diǎn)B落到x軸的正半軸上,如果該拋物線同時(shí)經(jīng)過原點(diǎn)O. ①試求當(dāng)n=3時(shí)a的值;
②直接寫出a關(guān)于n的關(guān)系式.

【答案】
(1)解:∵拋物線過矩形頂點(diǎn)B、C,其中C(0,1),B(n,1)

∴當(dāng)n=1時(shí),拋物線對(duì)稱軸為直線x= ,

∵a=﹣1,

∴b=1,

答:b的值是1


(2)解:設(shè)所求拋物線解析式為y=ax2+bx+1,

由對(duì)稱性可知拋物線經(jīng)過點(diǎn)B(2,1)和點(diǎn)M( ,2),

,

解得

∴所求拋物線解析式為

答:此時(shí)拋物線的解析式是


(3)解:①當(dāng)n=3時(shí),OC=1,BC=3,

設(shè)所求拋物線解析式為y=ax2+bx,

過C作CD⊥OB于點(diǎn)D,

則Rt△OCD∽R(shí)t△OBC,

,

設(shè)OD=t,則CD=3t,

∵OD2+CD2=OC2

∴(3t)2+t2=12,

,

∴C( , ),

又∵B( ,0),

∴把B、C坐標(biāo)代入拋物線解析式,得 ,

解得:a=﹣

a關(guān)于n的關(guān)系式是


【解析】(1)根據(jù)已知得到拋物線對(duì)稱軸為直線x= ,代入即可求出b;(2)設(shè)所求拋物線解析式為y=ax2+bx+1,由對(duì)稱性可知拋物線經(jīng)過點(diǎn)B(2,1)和點(diǎn)M( ,2),把B、M的坐標(biāo)代入得到方程組 ,求出a、b的值即可得到拋物線解析式;(3)①當(dāng)n=3時(shí),OC=1,BC=3,設(shè)所求拋物線解析式為y=ax2+bx,過C作CD⊥OB于點(diǎn)D,則Rt△OCD∽R(shí)t△OBC,得出 ,設(shè)OD=t,則CD=3t,根據(jù)勾股定理OD2+CD2=OC2 , 求出t,得出C的坐標(biāo),把B、C坐標(biāo)代入拋物線解析式即可得到方程組,求出a即可;②根據(jù)(1)、(2)①總結(jié)得到答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用解二元一次方程組和勾股定理的概念的相關(guān)知識(shí)可以得到問題的答案,需要掌握二元一次方程組:①代入消元法;②加減消元法;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一自助夏令營活動(dòng)中,小明同學(xué)從營地A出發(fā),要到A地的北偏東60°方向的C處,他先沿正東方向走了200m到達(dá)B地,再沿北偏東30°方向走,恰能到達(dá)目的地C(如圖),那么,由此可知,B、C兩地相距 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

(1)27﹣16+(﹣7)﹣18;

(2)(﹣6)×(﹣)÷(﹣);

(3)()×60;

(4)﹣24+3×(﹣1)4﹣(﹣2)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.

(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?

(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%.現(xiàn)已掛果,經(jīng)濟(jì)效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計(jì)圖所示.
(1)分別計(jì)算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過計(jì)算說明,哪個(gè)山上的楊梅產(chǎn)量較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠A是銳角,則下列結(jié)論正確個(gè)數(shù)為( 。﹤(gè).
=sinA-1;②sinA+cosA>1;③tanA>sinA;④cosA=sin(90°﹣∠A)
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y =(2m+1) x+ m-3

(1) 若函數(shù)圖象經(jīng)過原點(diǎn),m的值.

(2) 若函數(shù)圖象在y軸的交點(diǎn)的縱坐標(biāo)為-2,求m的值.

(3)若函數(shù)的圖象平行直線y=-3x–3,求m的值.

(4)若這個(gè)函數(shù)是一次函數(shù),y隨著x的增大而減小,m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線 y=kx+b 與直線交點(diǎn)的縱坐標(biāo)為 5,而與直線 y=3x﹣9 的交點(diǎn)的橫 坐標(biāo)也是 5,則直線 y=kx+b 與兩坐標(biāo)軸圍成的三角形面積為(

A. B. C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程:①y=4x+2,2x-3y=4.

(1)根據(jù)方程①填寫下表:

x

2

1

0

-1

-2

y

(2)根據(jù)方程②填寫下表:

x

2

1

0

-1

-2

y

(3)根據(jù)以上兩表中的數(shù)據(jù)求方程組的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案