【題目】如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.

下列判斷: 當(dāng)x>2時(shí),M=y2;

當(dāng)x<0時(shí),x值越大,M值越大;

使得M大于4的x值不存在;

若M=2,則x= 1 .

其中正確的有

A.1個(gè) B.2個(gè) C. 3個(gè) D.4個(gè)

【答案】B

【解析】

試題當(dāng)y1=y2時(shí),即時(shí),解得:x=0或x=2,

由函數(shù)圖象可以得出當(dāng)x>2時(shí), y2>y1;當(dāng)0<x<2時(shí),y1>y2;當(dāng)x<0時(shí), y2>y1。∴①錯(cuò)誤。

當(dāng)x<0時(shí), -直線的值都隨x的增大而增大,

當(dāng)x<0時(shí),x值越大,M值越大。∴②正確

拋物線的最大值為4,M大于4的x值不存在∴③正確;

當(dāng)0<x<2時(shí),y1>y2,當(dāng)M=2時(shí),2x=2,x=1;

當(dāng)x>2時(shí),y2>y1,當(dāng)M=2時(shí),,解得(舍去)。

使得M=2的x值是1或。∴④錯(cuò)誤

綜上所述,正確的有2個(gè)。故選B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),Bb0),C(-1,2),且+(a+2b-4)2=0.

1)求ab的值.

2)在y軸的正半軸上存在一點(diǎn)M,使SCOM=SABC,求出點(diǎn)M的坐標(biāo).

3)在坐標(biāo)軸的其他位置是否有在點(diǎn)M,使SCOM=SABC仍成立?若存在,請(qǐng)直 接寫出符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分)某興趣小組開展課外活動(dòng).如圖,A,B兩地相距12米,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子仍落在其身后,并測得這個(gè)影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H,此時(shí)他(GH)在同一燈光下的影長為BH(點(diǎn)C,E,G在一條直線上).

(1)請(qǐng)?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時(shí)在這個(gè)燈光下的影長FM(不寫畫法);

2)求小明原來的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)經(jīng)過ABCD的頂點(diǎn)B、D,點(diǎn)A的坐標(biāo)為(0,﹣1),ABx軸,CD經(jīng)過點(diǎn)(0,2),ABCD的面積是18,則點(diǎn)D的坐標(biāo)是( 。

A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC,AB=AC,AC的垂直平分線與AB所在直線相交所得的銳角為40°,∠C=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0)、C(2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.

(1)求拋物線及直線AC的函數(shù)關(guān)系式;

(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);

(3)設(shè)點(diǎn)M(3,n),求使MN+MD取最小值時(shí)n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD為斜邊AB上的中線.

(1)如圖1,AE平分∠CABBCE,交CDF,若DF=2,求AC的長;

(2)將圖1中的△ADC繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定角度得到△ADN,如圖2,P,Q分別為線段AN,BC的中點(diǎn),連接AC,BN,PQ,求證:BN=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABDRtACE如下3個(gè)圖擺放,其中ABAD,ACAE

1)如圖1,求證:BECD

2)如圖2,MDE中點(diǎn),求證:BC2AM

3)如圖3,ABCEAEBC,AC,AB2,直接寫出四邊形BCED的面積.

查看答案和解析>>

同步練習(xí)冊答案