已知,,則應(yīng)等于
[     ]
A.a+b
B.
C.
D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線L:y=ax2+bx+c(其中a、b、c都不等于0),它的頂點(diǎn)P的坐標(biāo)是(-
b
2a
4ac-b2
4a
)
,與y軸的交點(diǎn)是M(0,c).我們稱以M為頂點(diǎn),對稱軸是y軸且過點(diǎn)P的拋物線為拋物線L的伴隨拋物線,直線PM為L的伴隨直線.
(1)請直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的解析式:
伴隨拋物線的解析式
 
,伴隨直線的解析式
 

(2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3,則這條拋物線的解析式是
 
;
(3)求拋物線L:y=ax2+bx+c(其中a、b、c都不等于0)的伴隨拋物線和伴隨直線的解析式;
(4)若拋物線L與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),x2>x1>0,它的伴隨拋物線與x軸交于C、D兩點(diǎn),且AB=CD.請求出a、b、c應(yīng)滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一組數(shù)據(jù)1,7,10,8,x,6,0,3,若
.
x
=5
,則x應(yīng)等于( 。
A、6B、5C、4D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•博野縣模擬)閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應(yīng)想辦法移動這些分散的線段,構(gòu)造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于
2
2

請你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

填空 
(1)若代數(shù)式 (x+2)0-(4-2x)-1 有意義,則x應(yīng)滿足的條件是
x≠±2
x≠±2

(2)已知:x2+y2+4x-6y+13=0,其中x、y都為有理數(shù),則x+2y=
4
4

(3)如圖1,求∠E+∠F+∠G+∠H+∠J+∠K+∠M+∠N的度數(shù)等于
360°
360°

(4)如圖2-1是長方形紙帶,∠DEF=28°,將紙帶沿EF折疊成圖2-2,再沿BF折疊成圖2-3,則圖2-3中的∠CFE的度數(shù)是
96°
96°

查看答案和解析>>

同步練習(xí)冊答案