【題目】直線與反比例函數(shù)的圖像分別交于點(diǎn)和點(diǎn),與坐標(biāo)軸分別交于點(diǎn)和點(diǎn).若點(diǎn)是軸上一動(dòng)點(diǎn),當(dāng)與相似時(shí),則點(diǎn)的坐標(biāo)為______.
【答案】或
【解析】
將A、B坐標(biāo)代入反比例函數(shù)解析式求出m、n,然后將A、B坐標(biāo)代入一次函數(shù)解析式,求出k,b,進(jìn)而得到直線解析式,再求出C、D坐標(biāo),分別討論兩種情況,利用相似比建立方程求解.
解:∵和點(diǎn)在反比例函數(shù)上,
∴,,
解得,
∴,
把,代入直線,得:
,解得,
∴直線
當(dāng)x=0時(shí),,當(dāng)時(shí),x=6,
∴C點(diǎn)坐標(biāo)(0,6),D點(diǎn)坐標(biāo)(6,0)
∴OC=6,OD=6,
設(shè)P點(diǎn)坐標(biāo)(a,0)
當(dāng)△COD∽△APD時(shí),如下圖所示,
∵AP⊥x軸,
∴P點(diǎn)橫坐標(biāo)與A點(diǎn)相同,即a=2,
∴P點(diǎn)坐標(biāo)為(2,0),
當(dāng)△COD∽△PAD時(shí),如下圖所示,
,
∵△COD∽△PAD
∵
∴
解得,所以P點(diǎn)坐標(biāo)為(-2,0)
綜上,P點(diǎn)坐標(biāo)為或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C在BA的延長線上,直線CD與圓O相切于點(diǎn)D,弦DF⊥AB于點(diǎn)E,連接BD,CD=BD=4,則OE的長度為( )
A.B.2C.2D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,E,F分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證: ;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | m | 5 | 2 | 1 | 2 | … |
則m的值是_____,當(dāng)y<5時(shí),x的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊,分別在軸、軸的正半軸上,,是上一點(diǎn),,,,,分別是線段,上的兩個(gè)動(dòng)點(diǎn),且始終保持,若為等腰三角形,則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對比函數(shù)來探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | <> | … | |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:
(1)請把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;
(2)觀察圖象并分析表格,回答下列問題:
①當(dāng)時(shí),隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個(gè)單位而得到的;
③圖象關(guān)于點(diǎn)______中心對稱.(填點(diǎn)的坐標(biāo))
(3)函數(shù)與直線交于點(diǎn),,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組為測量校園主教學(xué)樓AB的高度,由于教學(xué)樓底部不能直接到達(dá),故興趣小組在平地上選擇一點(diǎn)C,用測角器測得主教學(xué)樓頂端A的仰角為30°,再向主教學(xué)樓的方向前進(jìn)24米,到達(dá)點(diǎn)E處(C,E,B三點(diǎn)在同一直線上),又測得主教學(xué)樓頂端A的仰角為60°,已知測角器CD的高度為1.6米,請計(jì)算主教學(xué)樓AB的高度.(≈1.73,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)得到△A'B'C',此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( )
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(4,4)、B(5,0)和原點(diǎn)O.P為二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,垂足為D(m,0),并與直線OA交于點(diǎn)C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點(diǎn)P在直線OA的上方時(shí),求線段PC的最大值;
(3)當(dāng)m>0時(shí),探索是否存在點(diǎn)P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com