【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費)
(2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?
【答案】(1)25;(2)當(dāng)每輛車的日租金為175元時,每天的凈收入最多是5025元.
【解析】
試題分析:(1)觀光車全部租出每天的凈收入=出租自行車的總收入﹣管理費,根據(jù)不等關(guān)系:凈收入為正,列出不等式求解即可;
(2)由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.
試題解析:(1)由題意知,若觀光車能全部租出,則0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍數(shù),∴每輛車的日租金至少應(yīng)為25元;
(2)設(shè)每輛車的凈收入為y元,當(dāng)0<x≤100時,y1=50x﹣1100,∵y1隨x的增大而增大,∴當(dāng)x=100時,y1的最大值為50×100﹣1100=3900;
當(dāng)x>100時,y2=(50﹣)x﹣1100==
當(dāng)x=175時,y2的最大值為5025,5025>3900,故當(dāng)每輛車的日租金為175元時,每天的凈收入最多是5025元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若記y=f(x)= ,其中f(1)表示當(dāng)x=1時y的值,即f(1)= ;f( )表示當(dāng)x= 時y的值,即 ;…;則f(1)+f(2)+f( )+f(3)+f( )+…+f(2011)+f( )=。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14,動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t(t>0)秒。
(1)寫出數(shù)軸上點B表示的數(shù) , 點P表示的數(shù)(用含t的代數(shù)式表示);
(2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?
(3)若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長;
(4)若點D是數(shù)軸上一點,點D表示的數(shù)是x,請你探索式子|x+6|+|x-8|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上,點A,B對應(yīng)的數(shù)是1和5,點C是線段AB的中點,則點C對應(yīng)的數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在手工制作課上,老師組織七年級(2)班的學(xué)生用硬紙制作圓柱形茶葉筒.七年級(2)班共有學(xué)生44人,其中男生人數(shù)比女生人數(shù)少2人,并且每名學(xué)生每小時剪筒身50個或剪筒底120個.
(1)七年級(2)班有男生、女生各多少人?
(2)要求一個筒身配兩個筒底,為了使每小時剪出的筒身與筒底剛好配套,應(yīng)該分配多少名學(xué)生剪筒身,多少名學(xué)生剪筒底?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,CD=12,BC=15,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A1處,求AE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com