如圖,在等邊△ABC中,BD為中線,CE為角平分線,BD、CE交于點M,則∠BME=________.

60°
分析:先根據(jù)等邊三角形的性質(zhì)得出∠ABC=60°,再根據(jù)BD為中線,CE為角平分線可得出∠EBD及∠BEC的度數(shù),再由三角形內(nèi)角和定理即可得出結論.
解答:∵△ABC是等邊三角形,
∴∠ABC=60°,
∵BD為中線,CE為角平分線,
∴∠EBD=∠ABC=×60°=30°,∠BEC=90°,
∴∠BME=180°-∠EBD-∠BEC=180°-30°-90°=60°.
故答案為:60°.
點評:本題考查的是等邊三角形的性質(zhì),熟知等邊三角形三線合一的性質(zhì)是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案