【題目】如圖,△ABC中,∠A=∠ABC,DE垂直平分BC,交BC于點(diǎn)D,交AC于點(diǎn)E.
(1)若AB=5,BC=8,求△ABE的周長(zhǎng);
(2)若BE=BA,求∠C的度數(shù).
【答案】(1)13(2)36°
【解析】
(1)由等邊對(duì)等角可知AC=BC=8,由線段垂直平分線的性質(zhì)可知CE=BE,進(jìn)而可求△ABE的周長(zhǎng);
(2)由BE=CE可知∠C=∠CBE,由外角性質(zhì)可得∠BEA=2∠C,由BE=BA可證∠A=∠BEA=2∠C,然后利用三角形內(nèi)角和等于180°列式求解即可.
(1)解:∵△ABC中,∠A=∠ABC
∴AC=BC=8
∵DE垂直平分BC,
EB=EC
又∵AB=5,
∴△ABE的周長(zhǎng)為:
AB+AE+EB=AB+(AE+EC)=AB+AC=5+8=13
(2)解:∵EB=EC
∴∠C=∠CBE
∵∠AEB=∠C+∠CBE
∴∠BEA=2∠C
∵BE=BA
∴∠AEB=∠A
又∵AC=BC
∴∠CBA=∠A=2∠C
∵∠CBA+∠A+∠C=180°
∴5∠C=180°
∴∠C=36°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點(diǎn)M是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△ABM為直角三角形時(shí),AM的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別為a、b、c,下列說(shuō)法中錯(cuò)誤的是( )
A.如果∠C-∠B=∠A,則△ABC是直角三角形,且∠C=90;
B.如果,則△ABC是直角三角形,且∠C=90;
C.如果(c+a)( c-a)=,則△ABC是直角三角形,且∠C=90;
D.如果∠A:∠B:∠C=3:2:5,則△ABC是直角三角形,且∠C=90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則B6B7的邊長(zhǎng)為( 。
A. 6 B. 12 C. 32 D. 64
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O(如圖),則圖中全等三角形的對(duì)數(shù)為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).
(1)畫(huà)出△ABC向右平移4個(gè)單位后得到的△A1B1C1;
(2)圖中AC與A1C1的關(guān)系是: _____________.
(3)畫(huà)出△ABC的AB邊上的高CD;垂足是D;
(4)圖中△ABC的面積是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用相同的小正方形按照某種規(guī)律進(jìn)行擺放,則第8個(gè)圖形中小正方形的個(gè)數(shù)是( )
A.71
B.78
C.85
D.89
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)某酒廠每天生產(chǎn)A,B兩種品牌的白酒共600瓶,A,B兩種品牌的白酒每瓶的成本和利潤(rùn)如下表:設(shè)每天生產(chǎn)A種品牌白酒x瓶,每天獲利y元.
(1)請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(2)如果該酒廠每天至少投入成本26400元,那么每天至少獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng)問(wèn)題情境:
如圖1,在△ABC中,AB=AC,∠BAC=90°,D,E分別是邊AB,AC的中點(diǎn),將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°)得到△AD′E′,連接CE′,BD′.探究CE′與BD′的數(shù)量關(guān)系;
探究發(fā)展:
(1)圖1中,猜想CE′與BD′的數(shù)量關(guān)系,并證明;
(2)如圖2,若將問(wèn)題中的條件“D,E分別是邊AB,AC的中點(diǎn)”改為“D為AB邊上任意一點(diǎn),DE∥BC交AC于點(diǎn)E“,其他條件不變,(1)中CE′與BD′的數(shù)量關(guān)系還成立嗎?請(qǐng)說(shuō)明理由;
拓展延伸:
(3)如圖3,在△ABC中,AB=AC,∠BAC=60°,點(diǎn)D,E分別在AB,AC上,且DE∥BC,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△AD′E′,連接CE′,BD′,請(qǐng)你仔細(xì)觀察,提出一個(gè)你最關(guān)心的數(shù)學(xué)問(wèn)題(例如:CE′與BD′相等嗎?).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com