已知:如圖,在直角△ABC中,∠ABC=90°,延長(zhǎng)AB至點(diǎn)D,使AD=AC,取AC的中點(diǎn)為F,連DF交BC于點(diǎn)G,并延長(zhǎng)至點(diǎn)E,使AE=CE.
(1)求證:⊿ABC≌⊿ADF;
(2)求證:.(改編)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知:△ABC中,
(1)只用直尺(沒有刻度)和圓規(guī)求作一點(diǎn)P,使點(diǎn)P同時(shí)滿足下列兩個(gè)條件(保留作圖痕跡,不必寫出作法):①點(diǎn)P到∠CAB的兩邊距離相等:②點(diǎn)P到A,B兩點(diǎn)的距離相等。
(2)若△ABC中,AC = AB = 4,∠CAB=120°,那么請(qǐng)計(jì)算以△ABC為軸截面的圓錐的側(cè)面積(保留根號(hào)和)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如果在△ABC 中,且AB>BC,那么下列最確切的結(jié)論是( ).
A、△ABC 是直角三角形 B、∠A=45° C、 D、AC=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過A、B、C三點(diǎn)作拋物線.
(1)求點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
(改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平行四邊形ABCD中,E為CD上一 點(diǎn),連接AE、BE、BD,且AE、BD交于點(diǎn),9: 21:49 ,則DE:EC= ( )
A.2:3 B. 2:5 C. 3:4 D.3:7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在 △ABC中,AB=BC,以AB為直徑的 ⊙0與 AC于點(diǎn)D,作DE垂足為E,延長(zhǎng)ED交BA的延長(zhǎng)線于點(diǎn)F.
( 1 )求證: EF是圓O的切線;
( 2 )若 BE = 12 , AF = 8 ,求 BC 的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com