【題目】如圖,OF是∠MON的平分線(xiàn),點(diǎn)A在射線(xiàn)OM上,P,Q是直線(xiàn)ON上的兩動(dòng)點(diǎn),點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=OA,作線(xiàn)段OQ的垂直平分線(xiàn),分別交直線(xiàn)OF、ON交于點(diǎn)B、點(diǎn)C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點(diǎn)都在射線(xiàn)ON上時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點(diǎn)都在射線(xiàn)ON的反向延長(zhǎng)線(xiàn)上時(shí),線(xiàn)段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請(qǐng)寫(xiě)出證明過(guò)程;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點(diǎn)都在射線(xiàn)ON上移動(dòng)時(shí),k是否存在最小值?若存在,請(qǐng)直接寫(xiě)出k的最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問(wèn)題;
(2)存在.證明方法類(lèi)似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,由此即可解決問(wèn)題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,∴k=0.5.
點(diǎn)睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考?碱}型.
【題型】解答題
【結(jié)束】
28
【題目】如圖,已知拋物線(xiàn)y=ax2+x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線(xiàn)l:y=﹣x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線(xiàn)y=ax2+x+c上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸,垂足為E,交直線(xiàn)l于點(diǎn)F.
(1)試求該拋物線(xiàn)表達(dá)式;
(2)如圖(1),若點(diǎn)P在第三象限,四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖(2),過(guò)點(diǎn)P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問(wèn)當(dāng)P點(diǎn)橫坐標(biāo)為何值時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似?
【答案】(1)y=x2+x﹣4;(2)點(diǎn)P的坐標(biāo)為(﹣,﹣)或(﹣8,﹣4);(3)點(diǎn)P的橫坐標(biāo)為﹣5.5或﹣10.5或2或﹣18時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似.
【解析】試題分析:(1)利用待定系數(shù)法列方程求解析式.(2)把P,F(xiàn)點(diǎn)坐標(biāo)用m表示寫(xiě)出來(lái),利用四邊形PCOF是平行四邊形得到m值,求得P點(diǎn)坐標(biāo).(3) ①由兩點(diǎn)間的距離公式可知分別計(jì)算AC,CD,AD勾股定理逆定理知三角形是直角三角形;②分類(lèi)討論,△ACD∽△CHP,△ACD∽△PHC分別計(jì)算P點(diǎn)坐標(biāo).
試題解析:
解:(1)由題意得: ,解得: ,
∴拋物線(xiàn)的表達(dá)式為y=x2+x﹣4.
(2)設(shè)P(m, m2+m﹣4),則F(m,﹣m﹣4).
∴PF=(﹣m﹣4)﹣(m2+m﹣4)=﹣m2﹣m.
∵PE⊥x軸,
∴PF∥OC.
∴PF=OC時(shí),四邊形PCOF是平行四邊形.
∴﹣m2﹣m=4,解得:m=﹣或m=﹣8.
當(dāng)m=﹣時(shí), m2+m﹣4=﹣,
當(dāng)m=﹣8時(shí), m2+m﹣4=﹣4.
∴點(diǎn)P的坐標(biāo)為(﹣,﹣)或(﹣8,﹣4).
(3)①證明:把y=0代入y=﹣x﹣4得:﹣x﹣4=0,解得:x=﹣8.
∴D(﹣8,0).
∴OD=8.
∵A(2,0),C(0,﹣4),
∴AD=2﹣(﹣8)=10.
由兩點(diǎn)間的距離公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,
∴AC2+CD2=AD2.
∴△ACD是直角三角形,且∠ACD=90°.
②由①得∠ACD=90°.
當(dāng)△ACD∽△CHP時(shí), ,即,
解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.
當(dāng)△ACD∽△PHC時(shí), ,即,
解得:n=0(舍去)或n=2或n=﹣18.
綜上所述,點(diǎn)P的橫坐標(biāo)為﹣5.5或﹣10.5或2或﹣18時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (1)問(wèn)題感知 如圖1,在△ABC中,∠C=90°,且AC=BC,點(diǎn)P是邊AC的中點(diǎn),連接BP,將線(xiàn)段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°到線(xiàn)段PD.連接AD.過(guò)點(diǎn)P作PE∥AB交BC于點(diǎn)E,則圖中與△BEP全等的三角形是 ,∠BAD= °;
(2)問(wèn)題拓展 如圖2,在△ABC中,AC=BC=AB,點(diǎn)P是CA延長(zhǎng)線(xiàn)上一點(diǎn),連接BP,將線(xiàn)段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)到線(xiàn)段PD,使得∠BPD=∠C,連接AD,則線(xiàn)段CP與AD之間存在的數(shù)量關(guān)系為CP=AD,請(qǐng)給予證明;
(3)問(wèn)題解決 如圖3,在△ABC中,AC=BC=AB=2,點(diǎn)P在直線(xiàn)AC上,且∠APB=30°,將線(xiàn)段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°到線(xiàn)段PD,連接AD,請(qǐng)直接寫(xiě)出△ADP的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】武警戰(zhàn)士乘一沖鋒舟從地逆流而上,前往地營(yíng)救受困群眾,途經(jīng)地時(shí),由所攜帶的救生艇將地受困群眾運(yùn)回地,沖鋒舟繼續(xù)前進(jìn),到地接到群眾后立刻返回地,途中曾與救生艇相遇.沖鋒舟和救生艇距地的距離(千米)和沖鋒舟出發(fā)后所用時(shí)間(分)之間的函數(shù)圖象如圖所示.假設(shè)營(yíng)救群眾的時(shí)間忽略不計(jì),水流速度和沖鋒舟在靜水中的速度不變.
(1)請(qǐng)直接寫(xiě)出沖鋒舟從地到地所用的時(shí)間.
(2)求水流的速度.
(3)沖鋒舟將地群眾安全送到地后,又立即去接應(yīng)救生艇.已知救生艇與地的距離(千米)和沖鋒舟出發(fā)后所用時(shí)間(分)之間的函數(shù)關(guān)系式為,假設(shè)群眾上下船的時(shí)間不計(jì),求沖鋒舟在距離地多遠(yuǎn)處與救生艇第二次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=32°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB,AC于點(diǎn)M和N,再分別以M,N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法:
①AD是∠BAC的平分線(xiàn);
②CD是△ADC的高;
③點(diǎn)D在AB的垂直平分線(xiàn)上;
④∠ADC=61°.
其中正確的有( ).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)O在BC邊上,∠BAC的平分線(xiàn)交⊙O于點(diǎn)D,連接BD,CD,過(guò)點(diǎn)D作PD∥BC與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)P.
(1)求證:PD是⊙O的切線(xiàn);
(2)求證:BD2=PBAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)(有甲、乙兩組)承包一條路段的修建工程,要求在規(guī)定時(shí)間內(nèi)完成.
(1)已知甲組單獨(dú)完成這項(xiàng)工作所需時(shí)間比規(guī)定時(shí)間多32天,乙組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多12,如果甲、乙兩組先合作20天,剩下的由甲組單獨(dú)做,則要誤期2天完成,那么規(guī)定時(shí)間是多少天?
(2)在實(shí)際工作中,甲、乙兩組合做這項(xiàng)工作的后,工程隊(duì)又承包了其他路段的工程,需抽調(diào)一組過(guò)去,從按時(shí)完成任務(wù)的角度考慮,你認(rèn)為留下哪一組最好?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了開(kāi)展“陽(yáng)光體育運(yùn)動(dòng)”,計(jì)劃購(gòu)買(mǎi)籃球、足球共60個(gè),已知每個(gè)籃球的價(jià)格為70元,每個(gè)足球的價(jià)格為80元.
(1)若購(gòu)買(mǎi)這兩類(lèi)球的總金額為4600元,求籃球、足球各買(mǎi)了多少個(gè)?
(2)若購(gòu)買(mǎi)籃球的總金額不超過(guò)購(gòu)買(mǎi)足球的總金額,求最多可購(gòu)買(mǎi)多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注.某校學(xué)生會(huì)為了了解垃圾分類(lèi)知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類(lèi),并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖.
(1)求:本次被調(diào)查的學(xué)生有多少名?補(bǔ)全條形統(tǒng)計(jì)圖.
(2)估計(jì)該校1200名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.
(3)被調(diào)查的“非常了解”的學(xué)生中有2名男生,其余為女生,從中隨機(jī)抽取2人在全校做垃圾分類(lèi)知識(shí)交流,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com