【題目】如圖,矩形ABCD,過點(diǎn)BAC的垂線交線段ADE,垂足為F.若CDF為等腰三角形, =_____

【答案】1;;

【解析】①如圖,連接DF

當(dāng)FC=FD時(shí),FDC=FCD∵∠ADF+∠FDC=90°,CAD+∠ACD=90°,∴∠FAD=FDC,FA=DF,FA=FCBFAC,BA=BC∵四邊形ABCD是矩形,∴四邊形ABCD是正方形,點(diǎn)E與點(diǎn)D重合,=1

②當(dāng)DF=CD時(shí),DMCFM點(diǎn)DF=CD,FM=CM∵∠DCM=BAFCD=AB,∴△ABF≌△CDMAF=CM,===;

③當(dāng)FC=DC時(shí)∵四邊形ABCD是矩形BFAC,∴△ABF∽△BCF,==,CD2=ADAEFC=DC四邊形ABCD是矩形,BFAC,∴△BFC≌△ABE,(AAS

AE=BF.在RtABE,AE2=BE2AB2=AD2CD2AE==,AE2=AD2ADAE,AD2ADAEAE2=0,解得AD=AEAD=AE(不合題意舍去),==

故答案為:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Px0)是x軸上的一個(gè)動(dòng)點(diǎn),它與原點(diǎn)的距離為y1

1)求y1關(guān)于x的函數(shù)解析式,并畫出這個(gè)函數(shù)的圖象;

2)若反比例函數(shù)y2的圖象與函數(shù)y1的圖象相交于點(diǎn)A,且點(diǎn)A的縱坐標(biāo)為2

k的值;

結(jié)合圖象,當(dāng)y1y2時(shí),寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在半徑等于5cm的圓內(nèi)有長為5cm的弦,則此弦所對的圓周角為(

A.120° B.30°或120°

C.60° D.60°或120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ACBC于C,BC=a,CA=b,AB=c,下列圖形中O與ABC的某兩條邊或三邊所在的直線相切,則O的半徑為的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要在長方形和環(huán)形地塊中鋪設(shè)草坪,長方形的長、寬分別為a mb m,環(huán)形的外圓、內(nèi)圓的半徑分別為R m、r m

(1)求共需草皮的面積.

(2)若草皮每平方米需30元,當(dāng) 時(shí),求草皮的費(fèi)用.(保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)將今年溫州市民最關(guān)注的熱點(diǎn)話題分為消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)最近一次隨機(jī)調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下

根據(jù)以上信息解答下列問題

(1)本次共調(diào)查   ,請?jiān)诖痤}卡上補(bǔ)全條形統(tǒng)計(jì)圖并標(biāo)出相應(yīng)數(shù)據(jù)

(2)若溫州市約有900萬人口,請你估計(jì)最關(guān)注教育問題的人數(shù)約為多少萬人?

(3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,求抽取的兩人恰好是甲和乙的概率列數(shù)狀圖或列表說明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4BC=6,EBC邊的中點(diǎn),點(diǎn)P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:PFA∽△ABE;

2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)PF,E為頂點(diǎn)的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當(dāng)以D為圓心,DP為半徑的⊙D線段AE只有一個(gè)公共點(diǎn)時(shí),請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,今年云南省面向縣級及農(nóng)村地區(qū)推廣,為相應(yīng)號召,某商場計(jì)劃用3800元購進(jìn)節(jié)能燈120只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

1)求甲、乙兩種節(jié)能燈各進(jìn)多少只?

2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線ly=﹣x2+bx+cbc為常數(shù)),其頂點(diǎn)E在正方形ABCD內(nèi)或邊上,已知點(diǎn)A(1,2),B(1,1),C(2,1).

(1)直接寫出點(diǎn)D的坐標(biāo)_____________;

(2)l經(jīng)過點(diǎn)B,Cl的解析式;

(3)設(shè)lx軸交于點(diǎn)M,N,當(dāng)l的頂點(diǎn)E與點(diǎn)D重合時(shí)求線段MN的值;當(dāng)頂點(diǎn)E在正方形ABCD內(nèi)或邊上時(shí),直接寫出線段MN的取值范圍

(4)l經(jīng)過正方形ABCD的兩個(gè)頂點(diǎn),直接寫出所有符合條件的c的值

查看答案和解析>>

同步練習(xí)冊答案