【題目】已知一元二次方程ax2+bx+c=0兩根為x1,x2,x2+x1=﹣,x2.x1=.如果拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,2),若abc=4,且a≥b≥c,則|a|+|b|+|c|的最小值為(  )

A. 5 B. 6 C. 7 D. 8

【答案】B

【解析】

易知:b+c=2-a,bc=,可將b、c看做是一元二次方程x2-(2-a)x+=0的兩實(shí)根,那么可根據(jù)≥0,求得a的大致取值范圍為a≥4.由于abc=4>0,且a≥b≥c,則說明:①a、b、c均大于0,由于a≥4,如果三數(shù)均為正數(shù),顯然a+b+c>4≠2,因此不合題意;

a正,b、c為負(fù),那么此時(shí)|a|+|b|+|c|=a-(b+c)=a-(2-a)=2a-2,根據(jù)得出的a的取值范圍,即可求出|a|+|b|+|c|的最小值.

a≥b≥c,若a<0,則b<0,c<0,a+b+c<0,與a+b+c=2矛盾,

a>0;

b+c=2-a,bc=,

b,c是一元二次方程x2-(2-a)x+=0的兩實(shí)根,

∴△=(2-a)2-4×≥0,

a3-4a2+4a-16≥0,即(a2+4)(a-4)≥0,故a≥4,

abc>0,

a,b,c為全大于0或一正二負(fù);①若a,b,c均大于0,
a≥4,與a+b+c=2矛盾;

②若a,b,c為一正二負(fù),則a>0,b<0,c<0,

|a|+|b|+|c|=a-b-c=a-(2-a)=2a-2,

a≥4,

2a-2≥6,

當(dāng)a=4,b=c=-1時(shí),滿足題設(shè)條件且使不等式等號(hào)成立,

|a|+|b|+|c|的最小值為6.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,,分別是的中點(diǎn),是對(duì)角線,延長(zhǎng)線于.若四邊形是菱形,則四邊形是(

A. 平行四邊形 B. 矩形

C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)m的值;

(3)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;

(4)根據(jù)圖象,寫出當(dāng)y0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列例題的解答過程:解方程:3(x﹣2)2+7(x﹣2)+4=0.

解:設(shè) x﹣2=y,則原方程化為:3y2+7y+4=0.

∵a=3,b=7,c=4,∴b2﹣4ac=72﹣4×3×4=1.

∴y= =.∴y1=﹣1,y2=﹣

當(dāng) y=﹣1 時(shí),x﹣2=﹣1,∴x=1;

當(dāng) y=﹣時(shí),x﹣2=﹣,∴x=

∴原方程的解為:x1=1,x2=

(1)請(qǐng)仿照上面的例題解一元二次方程:2(x﹣3)2﹣5(x﹣3)﹣7=0;

(2)若(a2+b2)(a2+b2﹣2)=3,求代數(shù)式 a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

如圖,為等腰直角三角形,,點(diǎn)為斜邊的中點(diǎn),是直角三角形,保持不動(dòng),將沿射線向左平移,平移過程中點(diǎn)始終在射線上,且保持直線于點(diǎn),直線于點(diǎn)

1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),的數(shù)量關(guān)系是__________.

2)如圖2,當(dāng)點(diǎn)在線段上時(shí),猜想有怎樣的數(shù)量關(guān)系與位置關(guān)系,并對(duì)你的猜想結(jié)果給予證明;

3)如圖3,當(dāng)點(diǎn)的延長(zhǎng)線上時(shí),連接,若,則的長(zhǎng)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CEDF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動(dòng)、娛樂、上網(wǎng)等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有1500名學(xué)生,估計(jì)愛好運(yùn)動(dòng)的學(xué)生有   人;

(4)在全校同學(xué)中隨機(jī)選取一名學(xué)生參加演講比賽,用頻率估計(jì)概率,則選出的恰好是愛好閱讀的學(xué)生的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=4,A=60°,若邊AC的垂直平分線DEAB于點(diǎn)D,連接CD,則△BDC的周長(zhǎng)為( 。

A. 8 B. 9 C. 5+ D. 5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 AB 是⊙O 的直徑,點(diǎn) C、D 在⊙O 上,過 D 點(diǎn)作 PF∥AC交⊙O 于 F,交 AB 于點(diǎn) E,∠BPF=∠ADC

(1)求證:AEEB=DEEF.

(2)求證:BP 是⊙O 的切線:

(3)當(dāng)?shù)陌霃綖?/span>,AC=2,BE=1 時(shí),求 BP 的長(zhǎng),

查看答案和解析>>

同步練習(xí)冊(cè)答案