【題目】如圖,雙曲線與直線相交于點(點在第一象限),其橫坐標為2.
(1)求的值;
(2)若兩個圖像在第三象限的交點為,則點的坐標為 ;
(3)點為此反比例函數(shù)圖像上一點,其縱坐標為3,過點作,交軸于點,直接寫出線段的長.
【答案】(1)k=12;(2);(3)3
【解析】
(1)將橫坐標為2代入y=3x解出縱坐標,再將坐標點代入反比例函數(shù)求出k即可.
(2)根據(jù)反比例函數(shù)的圖象性質(zhì)即可寫出.
(3)先算出B的坐標,再算出BC的表達式即可算出C的坐標點,則OC即可得出.
(1)把代入中,得
把代入中,得,
.
(2)∵A(2,6)
∴根據(jù)反比例函數(shù)的圖象M.
(3)將y=3代入,解得x=4,則B(4,3),
∵BC∥OA,
∴設(shè)BC:y=3x+b,
將B(4,3)代入解得:b=-9,BC:y=3x-9.
令y=0,則3x-9=0,x=3,
∴C(3,0)即OC=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對稱軸為x=﹣1,且過點(,0),有下列結(jié)論:①abc>0; ②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正確的結(jié)論是( 。
A.①③B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017湖北省鄂州市)小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣(2a+1)x+c(a>0)的圖象經(jīng)過坐標原點O,一次函數(shù)y=x﹣4與x軸、y軸分別交于點A、B.
(1)c= ,點A的坐標為 .
(2)若二次函數(shù)y=a2﹣(2a+1)x+c的圖象經(jīng)過點A,求a的值.
(3)若二次函數(shù)y=a2﹣(2a+1)x+c的圖象與△AOB只有一個公共點,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,點E、F分別是AB、AD邊上一點,∠DFC=2∠FCE.
(1)如圖1,若四邊形ABCD是正方形,∠DFC=60°,BE=4,則AF= .
(2)如圖2,若四邊形ABCD是菱形,∠A=120°,∠DFC=90°,BE=4,求的值.
(3)如圖3,若四邊形ABCD是矩形,點E是AB的中點,CE=12,CF=13,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板頂端F到地面的距離.(結(jié)果精確到0.1 m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=2,點E是邊BC的中點,P為AB上一點,連接PE,過點E作PE的垂線交射線AD于點Q,連接PQ,設(shè)AP的長為t.
(1)用含t的代數(shù)式表示AQ的長;
(2)若△PEQ的面積等于10,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com