【題目】某校在一次比賽中將所有參賽同學(xué)分為四個(gè)組,其中第一組有x人,第二組比第一組的少5人,第三組比第一、二組的和少15人,第一組的2倍與第四組的和是30人.
(1)用含x的式子分別表示第二、三、四組的人數(shù)及參賽總?cè)藬?shù);
(2)當(dāng)x=10時(shí),第四組與第三組相比,哪組的人數(shù)多?多多少人?
(3)x能否等于13,為什么?x能否等于20,為什么?
【答案】(1)第二組的人數(shù):(x﹣5)人;第三組的人數(shù):(x﹣20)人;第四組的人數(shù):(30﹣2x)人;參賽總?cè)藬?shù):(3x+5)人:(2)第四組的人數(shù)多,多5人;(3)x不能等于13,見(jiàn)解析;x不能等于20,見(jiàn)解析
【解析】
(1)根據(jù)題意可用含x的代數(shù)式表示第二、三、四組的人數(shù);
(2)把x=10代入計(jì)算可求第二、三、四組的人數(shù);
(3)分別把x=13,x=20代入計(jì)算,根據(jù)整數(shù)的性質(zhì)即可求解.
解:(1)第二組的人數(shù):人;
第三組的人數(shù):人;
第四組的人數(shù):(30﹣2x)人;
參賽總?cè)藬?shù):;
(2)當(dāng)x=10時(shí),
第三組的人數(shù):;
第四組的人數(shù):30﹣2x=30﹣20=10;
10﹣5=5(人).
故第四組的人數(shù)多,多5人;
(3)當(dāng)x=13時(shí),,
∵不是整數(shù),
∴x不能等于13;
當(dāng)x=20時(shí),,
∵﹣10是負(fù)數(shù),
∴x不能等于20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD的周長(zhǎng)為44cm,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC.
(1)若AF=6cm,求FC的長(zhǎng).
(2)連接BE,求證:BE平分∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下面三行數(shù),
①2,-4,8,-16,32,-64……
②3,-3,9,-15,33,-63……
③-1,2,-4,8,-16,32……
取每一行的第個(gè)數(shù),依次記為,如上圖中,當(dāng)時(shí),,,已知這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為769,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱(chēng)點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.問(wèn):
(1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖反映的是小華從家里跑步去體育館,在那里鍛煉了一陣后又走到文具店去買(mǎi)筆,然后走回家,其中x表示時(shí)間,y表示小華離家的距離.根據(jù)圖像回答下列問(wèn)題:
(1)小華在體育館鍛煉了_____分鐘;
(2)體育館離文具店______千米;
(3)小華從家跑步到體育館,從文具店散步回家的速度分別是多少千米/分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過(guò)程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問(wèn)題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請(qǐng)直接寫(xiě)出因式分解的最后結(jié)果_________.
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O是四邊形ABCD內(nèi)一點(diǎn),OA=OB=OC,∠ABC=∠ADC=70°,則∠DAO+∠DCO的大小是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)專(zhuān)賣(mài)店銷(xiāo)售甲,乙兩種型號(hào)的新能源汽車(chē),上周售出甲型汽車(chē)和乙型汽車(chē)各2輛,銷(xiāo)售額為88萬(wàn)元;本周售出3輛甲型汽車(chē)和1輛乙型汽車(chē),兩周的銷(xiāo)售額為184萬(wàn)元.
(1)求每輛甲型汽車(chē)和乙型汽車(chē)的售價(jià);
(2)某公司擬向該店購(gòu)買(mǎi)甲,乙兩種型號(hào)的新能源汽車(chē)共6輛,購(gòu)車(chē)費(fèi)不少于130萬(wàn)元,且不超過(guò)140萬(wàn)元.則有哪幾種購(gòu)車(chē)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題再現(xiàn):
數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想方法,借助這種思想方法可將抽象的數(shù)學(xué)知識(shí)變得直觀并且具有可操作性.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過(guò)表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.
例如:利用圖形的幾何意義驗(yàn)證完全平方公式.
將一個(gè)邊長(zhǎng)為的正方形的邊長(zhǎng)增加,形成兩個(gè)長(zhǎng)方形和兩個(gè)正方形,如圖所示:這個(gè)圖形的面積可以表示成:
或
∴
這就驗(yàn)證了兩數(shù)和的完全平方公式.
類(lèi)比解決:
請(qǐng)你類(lèi)比上述方法,利用圖形的幾何意義驗(yàn)證平方差公式.
(要求畫(huà)出圖形并寫(xiě)出推理過(guò)程)
問(wèn)題提出:如何利用圖形幾何意義的方法證明?
如圖所示,表示1個(gè)1×1的正方形,即:,表示1個(gè)2×2的正方形,與恰好可以拼成1個(gè)2×2的正方形,因此:、、就可以表示2個(gè)2×2的正方形,即:而、、、恰好可以拼成一個(gè)的大正方形.
由此可得:.
嘗試解決:
請(qǐng)你類(lèi)比上述推導(dǎo)過(guò)程,利用圖形的幾何意義確定:_______.(要求寫(xiě)出結(jié)論并構(gòu)造圖形寫(xiě)出推證過(guò)程).
問(wèn)題拓廣:
請(qǐng)用上面的表示幾何圖形面積的方法探究:_______.(直接寫(xiě)出結(jié)論即可,不必寫(xiě)出解題過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com