精英家教網 > 初中數學 > 題目詳情

【題目】對于平面直角坐標系xOy中的動點P和圖形N,給出如下定義:如果Q為圖形N上一個動點,PQ兩點間距離的最大值為dmax,PQ兩點間距離的最小值為dmin,我們把dmax+dmin的值叫點P和圖形N間的和距離,記作dP,圖形N).

1)如圖1,正方形ABCD的中心為點O,A3,3).

①點O到線段AB和距離dO,線段AB=______;

②設該正方形與y軸交于點EF,點P在線段EF上,dP,正方形ABCD=7,求點P的坐標.

2)如圖2,在(1)的條件下,過C,D兩點作射線CD,連接AC,點M是射線CD上的一個動點,如果6dM,線段AC)<6+3,直接寫出M點橫坐標t取值范圍.

【答案】(1)①;②點P的坐標為(0,1)或(0,-1);(2)t取值范圍是-3<t<3.

【解析】

1)①根據和距離的定義計算:OE是兩點間距離的最小值,OA是兩點間的最大值,相加可得結論;
②分兩種情況:Py軸的正半軸和負半軸上,根據和距離的定義,并由dP,正方形ABCD=7,列方程計算即可得;
2)分M在線段CD上和延長線上兩種情況,利用和距離的定義列方程可得結論.

解:(1)①如圖1,連接OA,

∵四邊形ABCD是正方形,且A3,3),

dmax+dmin=OE+OA=3+3,即dO,線段AB=3+3

故答案為:3+3;

②設P0,y),

dP,正方形ABCD=7,

dmax+dmin=7,

分兩種情況:

E0,3),F0,-3),且P是線段EF上一個動點,

i)當Px軸上方時,如圖2,連接PC,

dmax+dmin=PE+PC=7

3-y+=7,

解得:y=1

經檢驗,y=1是原方程的解,

P0,1),

ii)當Px軸的下方時,同理可得P0-1);

綜上,點P的坐標為(0,1)或(0,-1);

2)分兩種情況:

①當-3≤t3時,如圖3,M在線段CD上,過MMNACN,連接AM,

M點橫坐標是t,

CM=t+3

∵四邊形ABCD是正方形,

∴∠ACD=45°,

∴△CMN是等腰直角三角形,

MN=t+3),

dM,線段AC=MN+MA=t+3+

②當t≥3時,如圖4,M在線段CD的延長線上,過MMNACN,

同理MN==t+3),

dM,線段AC=MN+CM=t+3+t+3,

∵在動點MCD方向上運動時,MN+MA越來越大,

t+3+=6,解得:t=-3,

t+3+t+3=6+3,解得:t=3

M點橫坐標t取值范圍是-3t3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1所示,已知拋物線的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉90°后,點C的對應點C′恰好落在y軸上.

1)直接寫出D點和E點的坐標;

2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上CF之間的一個動點,若過點H作直線HGy軸平行,且與直線C′E交于點G,設點H的橫坐標為m0m4),那么當m為何值時,=56?

3)圖2所示的拋物線是由向右平移1個單位后得到的,點T5,y)在拋物線上,點P是拋物線上OT之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我國古代第一部數學專著《九章算術》中有這樣一道題:今有上禾7束,減去其中之實1斗,加下禾2束,則得實10斗.下禾8束,加實1斗和上禾2束,則得實10斗,問上禾、下禾1束得實多少?

譯文為:今有上等禾7捆結出的糧食,減去1斗再加上2捆下等禾結出的糧食,共10斗;下等禾8捆結出的糧食,加上1斗和上等禾2捆結出的糧食,共10斗,問上等禾和下等禾1捆各能結出多少斗糧食?(斗為體積單位)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校九(1)班開展數學活動,李明和張華兩位同學合作用測角儀測量學校旗桿的高度,李明站在B點測得旗桿頂端E點的仰角為45°,張華站在DD點在直線FB上)測得旗桿頂端E點仰角為15°,已知李明和張華相距(BD30米,李明的身高(AB1.6米,張華的身高(CD1.75米,求旗桿的高EF的長.(結果精確到0.1.參考數據:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C在⊙O上,AB為直徑,BD與過點C的切線垂直于D,BD與⊙O交于點E

1)求證:BC平分∠DBA;

2)如果cosABD=,OA=2,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直角三角形ACB,AC=3BC=4,過直角頂點CCA1AB,垂足為A1,再過A1A1C1BC,垂足為C1;過CA1C1A2AB,垂足為A2,再過A2A2C2BC,垂足為C2;,這樣一直做下去,得到一組線段A1C1,C2A2,則線段AnCn=___.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=5,BC=8,若ABC沿射線BC方向平移m個單位得到DEF,頂點A,B,C分別與D,E,F對應,若以點A,D,E為頂點的三角形是等腰三角形,則m的值是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市制米廠接到加工大米任務,要求5天內加工完220噸大米,制米廠安排甲、乙兩車間共同完成加工任務,乙車間加工中途停工一段時間維修設備,然后改變加工效率繼續(xù)加工,直到與甲車間同時完成加工任務為止.設甲、乙兩車間各自加工大米數量y(噸)與甲車間加工時間s(天)之間的關系如圖(1)所示;未加工大米w(噸)與甲加工時間x(天)之間的關系如圖(2)所示,請結合圖象回答下列問題:

(1)甲車間每天加工大米   噸,a=   

(2)求乙車間維修設備后,乙車間加工大米數量y(噸)與x(天)之間函數關系式.

(3)若55噸大米恰好裝滿一節(jié)車廂,那么加工多長時間裝滿第一節(jié)車廂?再加工多長時間恰好裝滿第二節(jié)車廂?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線a≠0)的對稱軸為直線x1,與x軸的交點(,0),(,0),且﹣10,有下列5個結論:①abc0;②ba+c;③a+bkka+b)(k為常數,且k≠1);④2c3b;⑤若拋物線頂點坐標為(1,n),則4acn),其中正確的結論有( 。﹤.

A. 5B. 4C. 3D. 2

查看答案和解析>>

同步練習冊答案