【題目】如圖,PA、PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E并垂直PB于D,交PA于C,若⊙O的半徑為2,△PCD的周長(zhǎng)等于12,則△PCD的面積是( ).

A. 6 B. 8 C. 10 D. 12

【答案】A

【解析】

根據(jù)切線的性質(zhì)和勾股定理,可以求得PD、CD的長(zhǎng),從而可以求得PCD的面積.

連接PO、OA、OC、OE、OB,

PA、PB切⊙OA、B兩點(diǎn),CD切⊙O于點(diǎn)E并垂直PBD,

PA=PB,CA=CB,DE=DB,OAPA,OBPB,

∴四邊形OBDE是正方形,

∵△PCD的周長(zhǎng)等于12,

PC+CD+PD=12,

PC+CA+PD+DB=12,

PA=OB=6,

設(shè)CA=a,

PC=6-a,PD=6-2=4,CD=2+a,

42+(2+a)2=(6-a)2,

解得,a=1,

CD=3,

∴△PCD的面積是:=6,

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xoyA(﹣4,6),B(﹣12),C(﹣4,1).

1)作出△ABC關(guān)于直線x1對(duì)稱的圖形△A1B1C1并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);

2)將△A1B1C1向左平移2個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書店老板去圖書批發(fā)市場(chǎng)購買某種圖書,第一次用 1200 元購買若干本,按 每本 10 元出售,很快售完.第二次購買時(shí),每本書的進(jìn)價(jià)比第一次提高了 20%,他用1500 元所購買的數(shù)量比第一次多 10 本.

1)求第一次購買的圖書,每本進(jìn)價(jià)多少元?

2)第二次購買的圖書,按每本 10 元售出 200 本時(shí),出現(xiàn)滯銷,剩下的圖書降價(jià)后全部 售出,要使這兩次銷售的總利潤(rùn)不低于 2100 元,每本至多降價(jià)多少元?(利潤(rùn)=銷售收入一進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長(zhǎng)率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成20176月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是半圓的直徑,四邊形是內(nèi)接正方形.

(1)求證:;

(2)在正方形的右側(cè)有一正方形,點(diǎn)上,在半圓上,上.若正方形的邊為,求正方形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線和直線相交于點(diǎn),直線軸交于點(diǎn),動(dòng)點(diǎn)在線段和射線上運(yùn)動(dòng).

1)求點(diǎn)的坐標(biāo);

2)求的面積;

3)當(dāng)的面積是的面積的時(shí), 求出這時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)“兩免一補(bǔ)”政策,某市2011年投入教育經(jīng)費(fèi)2500萬元,預(yù)計(jì)2013年要投入教育經(jīng)費(fèi)3600萬元,已知2011年至2013年的教育經(jīng)費(fèi)投入以相同的百分率逐年增長(zhǎng),則2014年要投入的教育經(jīng)費(fèi)為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,軸上一點(diǎn),的中點(diǎn),,為反比例函數(shù)的圖象上兩點(diǎn),且,,若,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017甘肅省天水市)△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=2CQ=9時(shí)BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案