在四邊形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在這四個(gè)條件中任選兩個(gè)作為已知條件,能判定四邊形ABCD是平行四邊形的概率是
 
考點(diǎn):列表法與樹狀圖法,平行四邊形的判定
專題:計(jì)算題
分析:列表得出所有等可能的情況數(shù),找出能判定四邊形ABCD是平行四邊形的情況數(shù),即可求出所求的概率.
解答:解:列表如下:
 1234
1---(2,1)(3,1)(4,1)
2(1,2)---(3,2)(4,2)
3(1,3)(2,3)---(4,3)
4(1,4)(2,4)(3,4)---
所有等可能的情況有12種,其中能判定出四邊形ABCD為平行四邊形的情況有8種,分別為(2,1);(3,1);(1,2);(4,2);(1,3);(4,3);(2,4);(3,4),
則P=
8
12
=
2
3

故答案為:
2
3
點(diǎn)評(píng):此題考查了列表法與樹狀圖法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,點(diǎn)H是BC的中點(diǎn),作射線AH,在線段AH及其延長(zhǎng)線上分別取點(diǎn)E,F(xiàn),連結(jié)BE,CF.
(1)請(qǐng)你添加一個(gè)條件,使得△BEH≌△CFH,你添加的條件是
 
,并證明.
(2)在問題(1)中,當(dāng)BH與EH滿足什么關(guān)系時(shí),四邊形BFCE是矩形,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)據(jù)2,3,4,6,a的平均數(shù)是4,則a=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮對(duì)60名同學(xué)進(jìn)行節(jié)水方法選擇的問卷調(diào)查(每人選擇一項(xiàng)),人數(shù)統(tǒng)計(jì)如圖,如果繪制成扇形統(tǒng)計(jì)圖,那么表示“一水多用”的扇形圓心角的度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1
 
y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果
3-m
m
=
3-m
m
成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD中,∠A=60°,BD=7,則菱形ABCD的周長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE與AD相交于點(diǎn)F,∠EDF=38°,則∠DBE的度數(shù)是( 。
A、25°B、26°
C、27°D、38°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過點(diǎn)A(1,4),對(duì)稱軸是直線x=-
3
2
,線段AD平行于x軸,交拋物線于點(diǎn)D.在y軸上取一點(diǎn)C(0,2),直線AC交拋物線于點(diǎn)B,連結(jié)OA,OB,OD,BD.

(1)求該二次函數(shù)的解析式;
(2)求點(diǎn)B坐標(biāo)和坐標(biāo)平面內(nèi)使△EOD∽△AOB的點(diǎn)E的坐標(biāo);
(3)設(shè)點(diǎn)F是BD的中點(diǎn),點(diǎn)P是線段DO上的動(dòng)點(diǎn),問PD為何值時(shí),將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的
1
4
?

查看答案和解析>>

同步練習(xí)冊(cè)答案