對于未知數(shù)為x的方程ax+1=2x,當(dāng)a滿足
a≠2
a≠2
時,方程有唯一解,而當(dāng)a滿足
a=2
a=2
時,方程無解.
分析:首先化成一般形式,若是一元一次方程就有唯一解,否則無解.
解答:解:移項,合并同類項,得:(a-2)x=-1,
當(dāng)a-2≠0,解得:a≠2;
故當(dāng)a≠2時,方程有唯一解,當(dāng)a=2時,方程無解.
故答案是:a≠2,a=2.
點評:主要考查了一元一次方程的解的定義.理解方程的解的定義,就是能夠使方程左右兩邊相等的未知數(shù)的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1.x2
(1)
0
0
2
2
2
2
0
0
(2)
-4
-4
1
1
-3
-3
-4
-4
(3)
2
2
3
3
5
5
6
6
請同學(xué)們仔細(xì)觀察方程的解,你會發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項之間有一定的關(guān)系.
一般的,對于關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
則x1+x2=
-p
-p
,x1.x2=
q
q

(2)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,利用上述結(jié)論,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程x1x2x1+x2x1.x2
(1)________________________
(2)________________________
(3)________________________
請同學(xué)們仔細(xì)觀察方程的解,你會發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項之間有一定的關(guān)系.
一般的,對于關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
則x1+x2=______,x1.x2=______.
(2)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為______
A.-2   B.2   C.-7   D.7
②已知x1,x2是方程x2-x-3=0的兩根,利用上述結(jié)論,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

對于未知數(shù)為x的方程ax+1=2x,當(dāng)a滿足________時,方程有唯一解,而當(dāng)a滿足________時,方程無解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

對于未知數(shù)為x的方程ax+1=2x,當(dāng)a滿足______時,方程有唯一解,而當(dāng)a滿足______時,方程無解.

查看答案和解析>>

同步練習(xí)冊答案