【題目】如圖所示,向一個半徑為R、容積為V的球形容器內(nèi)注水,則能夠反映容器內(nèi)水的體積y與容器內(nèi)水深x間的函數(shù)關(guān)系的圖象可能是( 。
A.
B.
C.
D.
【答案】A
【解析】解:根據(jù)球形容器形狀可知,函數(shù)y的變化趨勢呈現(xiàn)出,當0<x<R時,y增量越來越大,當R<x<2R時,y增量越來越小,曲線上的點的切線斜率先是逐漸變大,后又逐漸變小,故y關(guān)于x的函數(shù)圖象是先凹后凸.
故選A.
水深h越大,水的體積v就越大,故容器內(nèi)水的體積y與容器內(nèi)水深x間的函數(shù)是增函數(shù),根據(jù)球的特征進行判斷分析即可.本題主要考查了函數(shù)圖象的變化特征,解題的關(guān)鍵是利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.解得此類試題時注意,如果把自變量與函數(shù)的每一對對應(yīng)值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形就是這個函數(shù)的圖象.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(3)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關(guān)信息如下.已知商品的進價為30元/件,設(shè)該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).
時間x(天) | 1 | 30 | 60 | 90 |
每天銷售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AOOM,OA=8,點B為射線OM上的一個動點,分別以OB、AB為直角邊,B為直角頂點,在OM兩側(cè)作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點,當點B在射線OM上移動時,PB的長度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點的運動而變化
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-3,2),B(-4,-3),C(-1,-1).
(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)寫出點△A1,B1,C1的坐標(直接寫答案):A1_________;B1________;C1________;
(3)求△A1B1C1的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是延長FD到點G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_____________________;
(2)探索延伸:如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是BC,CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
(3)結(jié)論應(yīng)用:如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時兩艦艇之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ABCD對角線AC所在直線上有一點O,OA=AC=2,將正方形繞O點順時針旋轉(zhuǎn)60°,在旋轉(zhuǎn)過程中,正方形掃過的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com