【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.

(1)求證:CF為⊙O的切線;
(2)填空:當∠CAB的度數(shù)為時,四邊形ACFD是菱形.

【答案】
(1)解:證明連結(jié)OC,如圖,

∵OA=OC,

∴∠A=∠OCA,

∴∠BOC=∠A+∠OCA=2∠A,

∵∠ABD=2∠BAC,

∴∠ABD=∠BOC,

∴OC∥BD,

∵CE⊥BD,

∴OC⊥CE,

∴CF為⊙O的切線;


(2)30°
【解析】(2)當∠CAB的度數(shù)為30°時,四邊形ACFD是菱形,

理由:∵∠A=30°,

∴∠COF=60°,

∴∠F=30°,

∴∠A=∠F,

∴AC=CF,

連接AD,

∵AB是⊙O的直徑,

∴AD⊥BD,

∴AD∥CF,

∴∠DAF=∠F=30°,

在△ACB與△ADB中,

∴△ACB≌△ADB,

∴AD=AC,

∴AD=CF,

∵AD∥CF,

∴四邊形ACFD是菱形.

所以答案是:30°.

【考點精析】解答此題的關(guān)鍵在于理解菱形的判定方法的相關(guān)知識,掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC、BC為邊向外側(cè)作正方形ACDE和正方形BCFG.

(1)△ABC與△DCF面積的關(guān)系是;(請在橫線上填寫“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請結(jié)合圖2給出證明;若不成立,請說明理由;

(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,運用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:在綜合與實踐課上,同學們以“已知三角形三邊的長度,求三角形面積”為主題開展數(shù)學活動,小穎想到借助正方形網(wǎng)格解決問題.圖1,圖2都是8×8的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點.

操作發(fā)現(xiàn):小穎在圖1中畫出△ABC,其頂點A,BC都是格點,同時構(gòu)造正方形BDEF,使它的頂點都在格點上,且它的邊DEEF分別經(jīng)過點C,A,她借助此圖求出了△ABC的面積.

1)在圖1中,小穎所畫的△ABC的三邊長分別是AB=__________,BC=__________,AC=__________;△ABC的面積為__________.

解決問題:(2)已知△ABC中,AB=,BC=2,AC=5,請你根據(jù)小穎的思路,在圖2的正方形網(wǎng)格中畫出△ABC,并計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC的三邊長分別為ab,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y1=kx+b的圖象分別交x軸,y軸于A、B兩點,與反比例函數(shù)y2= 的圖象交于C、D兩點,已知點C的坐標為(﹣4,﹣1),點D的橫坐標為2.

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)直接寫出當x為何值時,y1>y2
(3)點P是反比例函數(shù)在第一象限的圖象上的點,且點P的橫坐標大于2,過點P做x軸的垂線,垂足為點E,當△APE的面積為3時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)尺規(guī)作圖:如圖1,請在x軸上作出表示(,0)的點(保留清晰作圖痕跡,不寫作法).

2)如圖2,已知點A4,2),點Bx軸上,若OAB=90°,試求點B的坐標;

3)如圖3,已知點A42),點Cx軸上,若OAC為等腰三角形,試求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是⊙O外一點,過點P作⊙O的切線PA,切點為A,連接PO,延長PO交⊙O于點B,若∠P=30°,PA=3 ,則弧AB的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M,N兩點.設(shè)AC=2,BD=1,AP=x,△CMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案