如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE的位置.若AE=1,BE=2,CE=3,則求∠BE′C的度數(shù).(提示:連接EE′)
考點(diǎn):旋轉(zhuǎn)的性質(zhì),勾股定理的逆定理,等腰直角三角形,正方形的性質(zhì)
專題:計(jì)算題
分析:連接EE′,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BE′=2,AE=CE′=1,∠EBE′=90°,則可判斷△BEE′為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得EE′=
2
BE=2
2
,∠BE′E=45°,在△CEE′中,由于CE′2+EE′2=CE2,根據(jù)勾股定理的逆定理得到△CEE′為直角三角形,即∠EE′C=90°,然后利用∠BE′C=∠BE′E+∠CE′E求解.
解答:解:連接EE′,如圖,
∵△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBE′,
∴BE=BE′=2,AE=CE′=1,∠EBE′=90°,
∴△BEE′為等腰直角三角形,
∴EE′=
2
BE=2
2
,∠BE′E=45°,
在△CEE′中,CE=3,CE′=1,EE′=2
2
,
∵12+(2
2
2=32,
∴CE′2+EE′2=CE2,
∴△CEE′為直角三角形,
∴∠EE′C=90°,
∴∠BE′C=∠BE′E+∠CE′E=135°.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了勾股定理的逆定理、等腰直角三角形的判定與性質(zhì)和正方形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:a2x-3-2a=x-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,電工李師傅借助梯子安裝天花板上距地面2.90m的頂燈.已知梯子由兩個(gè)相同的矩形面組成,每個(gè)矩形面的長都被六條踏板七等分,使用時(shí)梯腳的固定跨度為1m.矩形面與地面所成的角α為78°.李師傅的身高為l.78m,當(dāng)他攀升到頭頂距天花板0.05~0.20m時(shí),安裝起來比較方便.
(1)求每條踏板間的垂直高度.
(2)請問他站立在梯子的第幾級踏板上安裝比較方便?,請你通過計(jì)算判斷說明.
(參考數(shù)據(jù):sin78°≈0.98,cos78°≈0.21,tan78°≈4.70)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡4(x2+xy-6)-3(2x2-xy)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是矩形,對角線AC、BD相交于點(diǎn)O,BE∥AC交DC的延長線于點(diǎn)E.求證:BD=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx-2(m≠0)與y軸交于點(diǎn)A,其對稱軸與x軸交于點(diǎn)B.
(1)求點(diǎn)A,B的坐標(biāo);
(3)若該拋物線在2<x<3這一段位于直線AB的下方,并且在3<x<4這一段位于直線AB的上方,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:(1-
1
100
)×(1-
1
99
)×(1-
1
98
)×(1-
1
97
)×…×(1-
1
4
)×(1-
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)a、b滿足b=
a-2
+
2-a
-3,則(a+b)2013=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x=3+2
2
,y=3-2
2
,則代數(shù)式x2y+xy2的值為
 

查看答案和解析>>

同步練習(xí)冊答案