“平行四邊形”的定義是________.

有兩組對邊分別平行的四邊形叫做平行四邊形
分析:根據(jù)平行四邊形:有兩組對邊分別平行的四邊形叫做平行四邊形.即可求得答案.
解答:“平行四邊形”的定義是:有兩組對邊分別平行的四邊形叫做平行四邊形.
故答案為:有兩組對邊分別平行的四邊形叫做平行四邊形.
點(diǎn)評:此題考查了平行四邊形的定義.此題比較簡單,注意熟記定義是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過點(diǎn)C任作一條直線交AB于點(diǎn)E,再過點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.
(4)如圖4,點(diǎn)E是平行四邊形ABCD的邊AB的黃金分割點(diǎn),過點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是平行四邊形ABCD的黃金分割線.請你畫一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過平行四邊形ABCD各邊黃金分割點(diǎn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:如果四邊形中一對頂點(diǎn)到另一對頂點(diǎn)所連對角線的距離相等,則把這對頂點(diǎn)叫做這個(gè)四邊形的一對等高點(diǎn).例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對等高點(diǎn).
(1)如圖2,已知平行四邊形ABCD,請你在圖2中畫出一個(gè)只有一對等高點(diǎn)的四邊形ABCE(要求:畫出必要的輔助線);
(2)已知P是四邊形ABCD對角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),請分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關(guān)系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當(dāng)四邊形ABCD只有一對等高點(diǎn)A、C時(shí),你得到的一個(gè)結(jié)論是
 

②如圖4,當(dāng)四邊形ABCD沒有等高點(diǎn)時(shí),你得到的一個(gè)結(jié)論是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、定義:到四邊形一組對邊距離相等,到另一組對邊的距離也相等的點(diǎn)叫做這個(gè)四邊形的準(zhǔn)內(nèi)點(diǎn).如圖甲,PE=PF,PG=PH,則點(diǎn)P就是四邊形ABCD的準(zhǔn)內(nèi)點(diǎn).
如圖乙,∠ARD與∠CSD的角平分線相交于點(diǎn)P,根據(jù)角平分線的性質(zhì)可以得出點(diǎn)P是就是四邊形ABCD的準(zhǔn)內(nèi)點(diǎn).


請你分別畫出平行四邊形(圖1)和梯形(圖2)的準(zhǔn)內(nèi)點(diǎn),并簡要說明準(zhǔn)內(nèi)點(diǎn)的位置.


畫圖:

說明:
(1)
對角線AC、BD的交點(diǎn)P即為平行四邊形ABCD的準(zhǔn)內(nèi)點(diǎn)


(2)
∠BSC的角平分線ST與梯形中位線MN的交點(diǎn)P即為梯形ABCD的準(zhǔn)內(nèi)點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,點(diǎn)C將線段AB分成兩部分,如果數(shù)學(xué)公式,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果數(shù)學(xué)公式,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過點(diǎn)C任作一條直線交AB于點(diǎn)E,再過點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請你說明理由.
(4)如圖4,點(diǎn)E是平行四邊形ABCD的邊AB的黃金分割點(diǎn),過點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是平行四邊形ABCD的黃金分割線.請你畫一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過平行四邊形ABCD各邊黃金分割點(diǎn).
作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市海淀區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•海淀區(qū)一模)我們給出如下定義:如果四邊形中一對頂點(diǎn)到另一對頂點(diǎn)所連對角線的距離相等,則把這對頂點(diǎn)叫做這個(gè)四邊形的一對等高點(diǎn).例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對等高點(diǎn).
(1)如圖2,已知平行四邊形ABCD,請你在圖2中畫出一個(gè)只有一對等高點(diǎn)的四邊形ABCE(要求:畫出必要的輔助線);
(2)已知P是四邊形ABCD對角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),請分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關(guān)系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當(dāng)四邊形ABCD只有一對等高點(diǎn)A、C時(shí),你得到的一個(gè)結(jié)論是______;
②如圖4,當(dāng)四邊形ABCD沒有等高點(diǎn)時(shí),你得到的一個(gè)結(jié)論是______.

查看答案和解析>>

同步練習(xí)冊答案