如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類(lèi)似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
(2)請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.
(4)如圖4,點(diǎn)E是平行四邊形ABCD的邊AB的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是平行四邊形ABCD的黃金分割線.請(qǐng)你畫(huà)一條平行四邊形ABCD的黃金分割線,使它不經(jīng)過(guò)平行四邊形ABCD各邊黃金分割點(diǎn).
精英家教網(wǎng)
分析:(1)若點(diǎn)D為AB邊上的黃金分割點(diǎn),則有
AD
AB
=
BD
AD
.如果設(shè)△ABC的邊AB上的高為h,根據(jù)三角形的面積公式,易得
S△ADC
S△ABC
=
AD
AB
S△BDC
S△ADC
=
BD
AD
,即有
S△ADC
S△ABC
=
S△BDC
S△ADC
,根據(jù)圖形的黃金分割線的定義即可判斷;
(2)由于等底同高的兩個(gè)三角形的面積相等,所以三角形任意一邊上的中線都將三角形分成面積相等的兩部分,即有s1=s2=
1
2
s
,則
s1
s
s2
s1
,從而可知三角形的中線不可能是該三角形的黃金分割線;
(3)由于直線CD是△ABC的黃金分割線,所以
S△ADC
S△ABC
=
S△BDC
S△ADC
.要想說(shuō)明直線EF也是△ABC的黃金分割線,只需證明
S△AEF
S△ABC
=
S四邊形BEFC
S△AEF
,即證S△ADC=S△AEF,S△BDC=S四邊形BEFC即可.因?yàn)镈F∥CE,所以△DFC和△DFE的公共邊DF上的高也相等,所以有S△DFC=S△DFE,所以S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四邊形BEFC
(4)根據(jù)黃金分割線的定義即可作出.本題答案不唯一,作法有無(wú)數(shù)種.
解答:解:(1)直線CD是△ABC的黃金分割線.理由如下:
設(shè)△ABC的邊AB上的高為h.
S△ADC=
1
2
AD•h
,S△BDC=
1
2
BD•h
S△ABC=
1
2
AB•h
,
S△ADC
S△ABC
=
AD
AB
,
S△BDC
S△ADC
=
BD
AD

又∵點(diǎn)D為邊AB的黃金分割點(diǎn),
AD
AB
=
BD
AD
,
S△ADC
S△ABC
=
S△BDC
S△ADC

故直線CD是△ABC的黃金分割線.

(2)∵三角形的中線將三角形分成面積相等的兩部分,
s1=s2=
1
2
s
,即
s1
s
s2
s1

故三角形的中線不可能是該三角形的黃金分割線.

(3)∵DF∥CE,
∴△DFC和△DFE的公共邊DF上的高也相等,
∴S△DFC=S△DFE
∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四邊形BEFC
又∵
S△ADC
S△ABC
=
S△BDC
S△ADC
,
S△AEF
S△ABC
=
S四邊形BEFC
S△AEF

因此,直線EF也是△ABC的黃金分割線.(7分)

(4)畫(huà)法不惟一,現(xiàn)提供兩種畫(huà)法;
畫(huà)法一:如答圖1,取EF的中點(diǎn)G,再過(guò)點(diǎn)G作一條直線分別交AB,DC于M,N點(diǎn),則直線MN就是平行四邊形ABCD的黃金分割線.
畫(huà)法二:如答圖2,在DF上取一點(diǎn)N,連接EN,再過(guò)點(diǎn)F作FM∥NE交AB于點(diǎn)M,連接MN,則直線MN就是平行四邊形ABCD的黃金分割線.
精英家教網(wǎng)
(9分)
點(diǎn)評(píng):本題考查學(xué)生的閱讀能力、知識(shí)遷移能力、分析問(wèn)題及解決問(wèn)題的能力.綜合性較強(qiáng),有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).
(1)某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),類(lèi)似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.(如圖2)精英家教網(wǎng)
問(wèn)題.試在圖3的梯形中畫(huà)出至少五條黃金分割線,并說(shuō)明理由.
(2)類(lèi)似“黃金分割線”得“黃金分割面”定義:截面a將一個(gè)體積為V的圖形分成體積為V精英家教網(wǎng)1、V2的兩個(gè)圖形,且
V1
V
=
V2
V1
,則稱直線a為該圖形的黃金分割面.
問(wèn)題:如圖4,長(zhǎng)方體ABCD-EFGH中,T是線段AB上的黃金分割點(diǎn),證明經(jīng)過(guò)T點(diǎn)且平行于平面BCGF的截面QRST是長(zhǎng)方體的黃金分割面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃石)如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類(lèi)似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點(diǎn)D,請(qǐng)問(wèn)點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請(qǐng)問(wèn)直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對(duì)角線AC、BD交于點(diǎn)F,延長(zhǎng)AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請(qǐng)問(wèn)直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類(lèi)似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
(2)研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF(如圖3),則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)如圖1,點(diǎn)C將線段AB分成兩部分,如果AB : AC=AC : BC,那么稱點(diǎn)C為線段的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類(lèi)似地給出“黃金分割線”的定義:直線將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1: S2,如果S : S1= S1: S2,,那么稱直線為該圖形的黃金分割線.

(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn)(如圖2),則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?

(2)請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?

(3)研究小組探究發(fā)現(xiàn):在(1)中,過(guò)點(diǎn)C任作AE交AB于E,再過(guò)點(diǎn)D作,交 AC于點(diǎn)F,連接EF(如圖3),則直線EF是△ABC的黃金分割線.請(qǐng)說(shuō)明理由.

(4)如圖4,點(diǎn)E是ABCD的邊AB的黃金分割點(diǎn),過(guò)點(diǎn)E作,交DC于點(diǎn)F,顯然直線EF是ABCD的黃金分割線.請(qǐng)你再畫(huà)一條ABCD的黃金分割線,使它不經(jīng)過(guò)ABCD各邊黃金分割點(diǎn)(保留必要的輔助線).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案