如圖,在等邊△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)O,且OD∥AB,OE∥AC.
(1)求證:△ODE是等邊三角形.
(2)線段BD、DE、EC 三者有什么數(shù)量關(guān)系?寫(xiě)出你的判斷過(guò)程.
(3)數(shù)學(xué)學(xué)習(xí)不但要能解決問(wèn)題,還要善于提出問(wèn)題.結(jié)合本題,在現(xiàn)有的圖形上,請(qǐng)?zhí)岢鰞蓚(gè)與“直角三角形”有關(guān)的問(wèn)題.(只要提出問(wèn)題,不需要解答)

(1)證明:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,
∴△ODE是等邊三角形;

(2)BD=DE=EC,
其理由是:∵OB平分∠ABC,且∠ABC=60°,
∴∠ABO=∠OBD=30°,
∵OD∥AB,
∴∠BOD=∠ABO=30°,
∴∠DBO=∠DOB,
∴DB=DO,
同理,EC=EO,
∵DE=OD=OE,
∴BD=DE=EC;

(3)①連接AO,并延長(zhǎng)交BC于點(diǎn)F,求證△ABF是直角三角形;
②若等邊△ABC的邊長(zhǎng)為1,求BC邊上的高長(zhǎng)是多少.
分析:(1)根據(jù)平行線的性質(zhì)及等邊三角形的性質(zhì)可得到△ODE是等邊三角形;
(2)根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)可得到∠DBO=∠DOB,根據(jù)等角對(duì)等邊可得到DB=DO,同理可證明EC=EO,因?yàn)镈E=OD=OE,所以BD=DE=EC;
(3)根據(jù)直角三角形及等邊三角形的性質(zhì)解答即可.
點(diǎn)評(píng):本題考查的是等邊三角形的性質(zhì),熟知等邊三角形的三條邊相等,三個(gè)內(nèi)角都是60°是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說(shuō)明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長(zhǎng);
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案