A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 首先根據(jù)等邊三角形的性質(zhì),得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根據(jù)全等三角形的對應(yīng)邊相等即可證得①正確;又由全等三角形的對應(yīng)角相等,得到∠CBD=∠CAE,根據(jù)ASA,證得△BCF≌△ACG,即可得到②正確,同理證得CF=CG,得到△CFG是等邊三角形,易得③正確.
解答 解:∵△ABC和△DCE均是等邊三角形,
∴BC=AC,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,
∴∠BCD=∠ACE,
在△BCD與△ACE中,
$\left\{\begin{array}{l}{BC=AC}\\{∠BCD=ACE}\\{CD=CE}\end{array}\right.$,
∴△BCD≌△ACE(SAS),
∴AE=BD,(①正確)
∠CBD=∠CAE,
∵∠BCA=∠ACG=60°,
在△BCF與△ACG中,
$\left\{\begin{array}{l}{∠CBD=∠CAG}\\{BC=AC}\\{∠BCA=∠ACG}\end{array}\right.$,
∴△BCF≌△ACG(ASA),
∴AG=BF,(②正確);
同理:△DFC≌△EGC(ASA),
∴CF=CG,
∴△CFG是等邊三角形,
∴∠CFG=∠FCB=60°,
∴FG∥BE,(③正確).
故選C.
點評 此題考查了等邊三角形的判定與性質(zhì)與全等三角形的判定與性質(zhì).此題圖形比較復(fù)雜,解題的關(guān)鍵是仔細(xì)識圖,合理應(yīng)用數(shù)形結(jié)合思想.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.9x元 | B. | 0.968x元 | C. | x元 | D. | 0.972x元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲公司近年的銷售收入增長速度比乙公司快 | |
B. | 乙公司近年的銷售收入增長速度比甲公司快 | |
C. | 甲、乙兩公司近年的銷售收入增長速度一樣快 | |
D. | 不能確定甲、乙兩公司近年銷售收入增長速度的快慢 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com