【題目】定義:
數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.
理解:
⑴如圖,已知是⊙上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使為“智慧三角形”(畫出點(diǎn)的位置,保留作圖痕跡);
⑵如圖,在正方形中,是的中點(diǎn),是上一點(diǎn),且,試判斷是否為“智慧三角形”,并說明理由;
運(yùn)用:
⑶如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點(diǎn)是直線上的一點(diǎn),若在⊙上存在一點(diǎn),使得為“智慧三角形”,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).
【答案】(1)詳見解析;(2)詳見解析;(3)P的坐標(biāo)(﹣,),(,).
【解析】試題分析:(1)連結(jié)AO并且延長(zhǎng)交圓于C1,連結(jié)BO并且延長(zhǎng)交圓于C2,即可求解;(2)設(shè)正方形的邊長(zhǎng)為4a,表示出DF=CF以及EC、BE的長(zhǎng),然后根據(jù)勾股定理列式表示出AF2、EF2、AE2,再根據(jù)勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性質(zhì)可得△AEF為“智慧三角形”;(3)根據(jù)“智慧三角形”的定義可得△OPQ為直角三角形,根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時(shí),另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為3,根據(jù)勾股定理可求另一條直角邊,再根據(jù)三角形面積可求斜邊的高,即點(diǎn)P的橫坐標(biāo),再根據(jù)勾股定理可求點(diǎn)P的縱坐標(biāo),從而求解.
試題解析:
(1)如圖1所示:
(2)△AEF是否為“智慧三角形”,
理由如下:設(shè)正方形的邊長(zhǎng)為4a,
∵E是DC的中點(diǎn),
∴DE=CE=2a,
∵BC:FC=4:1,
∴FC=a,BF=4a﹣a=3a,
在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,
在Rt△ECF中,EF2=(2a)2+a2=5a2,
在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,
∴AE2+EF2=AF2,
∴△AEF是直角三角形,
∵斜邊AF上的中線等于AF的一半,
∴△AEF為“智慧三角形”;
(3)如圖3所示:
由“智慧三角形”的定義可得△OPQ為直角三角形,
根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時(shí),另一條直角邊最短,則面積取得最小值,
由垂線段最短可得斜邊最短為3,
由勾股定理可得PQ=,
PM=1×2÷3=,
由勾股定理可求得OM=,
故點(diǎn)P的坐標(biāo)(﹣,),(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道“對(duì)于實(shí)數(shù)m,n,k,若m=n,n=k,則m=k”,即相等關(guān)系具有傳遞性.小敏由此進(jìn)行聯(lián)想,提出了下列命題:
①a,b,c是直線,若a∥b,b∥c,則a∥c.
②a,b,c是直線,若a⊥b,b⊥c,則a⊥c.
③若∠α與∠β互余,∠β與∠γ互余,則∠α與∠γ互余.
其中正確的命題是( )
A.①B.①②C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列選項(xiàng)中,可以用來證明命題“若a2>1,則a>1”是假命題的反例是( )
A.a=﹣2
B.a=﹣1
C.a=1
D.a=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,DF⊥AE于點(diǎn)F,求∠ADF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的⊙與邊分別交于兩點(diǎn),過點(diǎn)作,垂足為點(diǎn).
⑴求證:是⊙的切線;
⑵若,求的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為 度.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=3x的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A(1,m)和點(diǎn)B.
(1)求m的值和反比例函數(shù)的解析式.
(2)觀察圖象,直接寫出使正比例函數(shù)的值大于反比例函數(shù)的值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產(chǎn)處兩種產(chǎn)品共件,已知生產(chǎn)每件產(chǎn)品需甲種原料,乙種原料,且每件產(chǎn)品可獲得元;生產(chǎn)每件產(chǎn)品甲種原料,乙種原料,且每件產(chǎn)品可獲利潤(rùn)元,設(shè)生產(chǎn)產(chǎn)品 件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問題:
(1)生產(chǎn)兩種產(chǎn)品的方案有哪幾種?
(2)設(shè)生產(chǎn)這件產(chǎn)品可獲利元,寫出關(guān)于的函數(shù)解析式,寫出(1)中利潤(rùn)最大的方案,并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com