【題目】我們知道,在數(shù)軸上,|a|表示數(shù)a到原點(diǎn)的距離,這是絕對(duì)值的幾 何意義,進(jìn)一步地,數(shù)軸上兩個(gè)點(diǎn)A、B,分別用a 和b 表示,那么A、B兩點(diǎn)之間的距離為AB=|a﹣b|利用此結(jié)論,回答以下問(wèn)題:
(1)數(shù)軸上表示3 和7 的兩點(diǎn)之間的距離是 ,數(shù)軸上表示﹣3 和﹣7 的兩 點(diǎn)之間的距離是 ,數(shù)軸上表示2 和﹣3 的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上表示x和﹣5 的兩點(diǎn)A、B之間的距離是 ,如果|AB|=3,那 么x的值為 ;
(3)當(dāng)代數(shù)式|x﹣1|+|x﹣3|取最小值時(shí),相應(yīng)的x的取值范圍是多少?最小值是多少?
(4)已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)是a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)是b,且|a+4|+(b﹣1)2=0,設(shè)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)是x,當(dāng)|PA|﹣|PB|=2時(shí),求x的值.
【答案】(1)4;4;5;(2);-8或-2;(3)x的范圍是;最小值是4;(4)x的值為.
【解析】
(1)(2)直接根據(jù)數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|a﹣b|.代入數(shù)值運(yùn)用絕對(duì)值即可求任意兩點(diǎn)間的距離.
(3)根據(jù)|x﹣a|表示數(shù)軸上x與a之間的距離,因而原式表示:數(shù)軸上一點(diǎn)到1和3距離的和,當(dāng)x在1和3之間時(shí)有最小值.
(4)應(yīng)考慮到A、B、P三點(diǎn)之間的位置關(guān)系的多種可能解題.
(1)數(shù)軸上表示3和7的兩點(diǎn)之間的距離是|7﹣3|=4,數(shù)軸上表示﹣3和﹣7的兩點(diǎn)之間的距離是|﹣7﹣(﹣3)|=4.?dāng)?shù)軸上表示2和﹣3的兩點(diǎn)之間的距離是|2﹣(﹣3)|=5.
(2)數(shù)軸上表示x和﹣5的兩點(diǎn)A和B之間的距離是|x﹣(﹣5)|=|x+5|,如果|AB|=3,那么x為﹣8或﹣2.
(3)代數(shù)式|x﹣1|+|x+3|表示在數(shù)軸上到1和﹣3兩點(diǎn)的距離的和,當(dāng)x在﹣3和1之間時(shí),代數(shù)式取得最小值,最小值是﹣3和1之間的距離4.
故當(dāng)﹣3≤x≤1時(shí),代數(shù)式取得最小值,最小值是4.
(4)①當(dāng)P在點(diǎn)A左側(cè)時(shí),|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.
②當(dāng)P在點(diǎn)B右側(cè)時(shí),|PA|﹣|PB|=|AB|=5≠2,∴上述兩種情況的點(diǎn)P不存在.
③當(dāng)P在A、B之間時(shí),|PA|=|x﹣(﹣4)|=x+4,|PB|=|x﹣1|=1﹣x.
∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x)=2,∴x,即x的值為.
故答案為:(1)4;4;5.
(2)|x+5|;﹣8或﹣2.
(3)x的范圍是﹣3≤x≤1;最小值是4.
(4)x的值為-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,∠BAC的平分線交BC于D,過(guò)點(diǎn)C作CG⊥AB于G,交AD于E,過(guò)點(diǎn)D作DF⊥AB于F.下列結(jié)論①∠CED= ;②;③∠ADF= ;④CE=DF.正確的是( )
A. ①②④ B. ②③④ C. ①③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角墻角AOB(OA⊥OB,且OA、OB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉(cāng),且地面矩形AOBC的面積為96m2 .
(1)求這地面矩形的長(zhǎng);
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價(jià)分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉(cāng)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材第九章中探索乘法公式時(shí),設(shè)置由圖形面積的不同表示方法驗(yàn)證了乘法公式.我國(guó)著名的數(shù)學(xué)家趙爽,早在公元3世紀(jì),就把一個(gè)矩形分成四個(gè)全等的直角三角形,用四個(gè)全等的直角三角形拼成了一個(gè)大的正方形(如圖①),這個(gè)圖形稱為趙爽弦圖,驗(yàn)證了一個(gè)非常重要的結(jié)論:在直角三角形中兩直角邊a、b與斜邊c滿足關(guān)系式a2+b2=c2,稱為勾股定理.
(1)愛(ài)動(dòng)腦筋的小明把這四個(gè)全等的直角三角形拼成了另一個(gè)大的正方形(如圖②),也能驗(yàn)證這個(gè)結(jié)論,請(qǐng)你幫助小明完成驗(yàn)證的過(guò)程.
(2)小明又把這四個(gè)全等的直角三角形拼成了一個(gè)梯形(如圖③),利用上面探究所得結(jié)論,求當(dāng)a=3,b=4時(shí)梯形ABCD的周長(zhǎng).
(3)如圖④,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.請(qǐng)?jiān)趫D中畫出△ABC的高BD,利用上面的結(jié)論,求高BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將三角形ABC向右平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度請(qǐng)回答下列問(wèn)題:
(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1 ,B1 ,C1 ;
(2)畫出平移后三角形A1B1C1;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,則關(guān)于x的方程ax2+bx+c=0的兩個(gè)根的和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列條件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能確定△ABC是直角三角形的條件有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC和△A1B1C1關(guān)于點(diǎn)E成中心對(duì)稱.
(1)畫出對(duì)稱中心E,并寫出點(diǎn)E、A、C的坐標(biāo);
(2)P(a,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)為P2(a+6,b+2),請(qǐng)畫出上述平移后的△A2B2C2,并寫出點(diǎn)A2、C2的坐標(biāo);
(3)判斷△A2B2C2和△A1B1C1的位置關(guān)系(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張買了張元的乘車IC卡,如果他乘車的次數(shù)用表示,則記錄他每次乘車后的余額(元)如下表:
次數(shù)m | 余額n(元) |
1 | 50—0.8 |
2 | 50—1.6 |
3 | 50—2.4 |
4 | 50—3.2 |
…… | …… |
【1】⑴寫出乘車的次數(shù)表示余額(元)的關(guān)系式;
【2】⑵利用上述關(guān)系式計(jì)算小張乘了13次車后還剩下多少元?
【3】⑶小張最多能乘幾次車?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com