【題目】如圖,在矩形ABCD中,AO=10,AB=8,分別以O(shè)C、OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,點(diǎn)D(3,10)、E(0,6),拋物線y=ax2+bx+c經(jīng)過O,D,C三點(diǎn).

(1)求拋物線的解析式;
(2)一動點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個單位長的速度向點(diǎn)C運(yùn)動,同時動點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個單位長的速度向點(diǎn)O運(yùn)動,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)C時,兩點(diǎn)同時停止運(yùn)動.設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使四邊形MENC是平行四邊形?若存在,請直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.

【答案】
(1)

解:∵四邊形ABCO為矩形,

∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.

∴C(8,0),

∵拋物線y=ax2+bx+c過點(diǎn)D(3,10),C(8,0),O(0,0),

,解得 ,

∴拋物線的解析式為y=﹣ x2+ x


(2)

解:∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,

∴∠DEA=∠OCE,

由(1)可得AD=3,AE=4,DE=5.

而CQ=t,EP=2t,

∴PC=10﹣2t.

當(dāng)∠PQC=∠DAE=90°,△ADE∽△QPC,

= ,即 = ,解得t=

當(dāng)∠QPC=∠DAE=90°,△ADE∽△PQC,

= ,即 = ,解得t=

∴當(dāng)t的 時,以P、Q、C為頂點(diǎn)的三角形與△ADE相似


(3)

解:存在符合條件的M、N點(diǎn),

EC為平行四邊形的對角線,由于拋物線的對稱軸經(jīng)過EC中點(diǎn),

若四邊形MENC是平行四邊形,那么M點(diǎn)必為拋物線頂點(diǎn);

則M(4, );

而平行四邊形的對角線互相平分,那么線段MN必被EC中點(diǎn)(4,3)平分,

則N(4,﹣ );

∴存在符合條件的M、N點(diǎn),且它們的坐標(biāo)為M(4, ),N(4,﹣


【解析】(1)由矩形的性質(zhì)可求得C點(diǎn)坐標(biāo),再利用待定系數(shù)法可求得拋物線的解析式;(2)用t可分別表示出CQ、PC的長,當(dāng)∠PQC=∠DAE=90°,有△ADE∽△QPC;當(dāng)∠QPC=∠DAE=90°,有△ADE∽△PQC,利用相似三角形的性質(zhì)可分別得到關(guān)于t的方程,可求得t的值;(3)由題意可知CE為平行四邊形的對角線,根據(jù)拋物線的對稱性可知當(dāng)M為拋物線頂點(diǎn)時滿足條件,再由平行四邊形的性質(zhì)可知線段MN被線段EC平分,可求得N點(diǎn)坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,BD、CE是高,BD與CE相交于點(diǎn)O
(1)求證:OB=OC;
(2)若∠ABC=50°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊AC與⊙O相交于C,D兩點(diǎn),且經(jīng)過圓心O,邊AB與⊙O相切,切點(diǎn)為B.如果∠A=34°,那么∠C等于(

A.28°
B.33°
C.34°
D.56°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)操作發(fā)現(xiàn):如圖,小明在矩形紙片ABCD的邊AD上取中點(diǎn)E,將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部,將BG延長交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決:保持(1)中條件不變,若DC=2FC,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生對“厲行勤儉節(jié)約,反對鋪張浪費(fèi)”主題活動的參與情況.小強(qiáng)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生并就某日午飯浪費(fèi)飯菜情況進(jìn)行了調(diào)查.將調(diào)查內(nèi)容分為四組:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.根據(jù)調(diào)查結(jié)果,繪制了如圖所示兩幅尚不完整的統(tǒng)計(jì)圖.

回答下列問題:
(1)這次被抽查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中,“B組”所對應(yīng)的圓心角的度數(shù)為;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)已知該中學(xué)共有學(xué)生2500人,請估計(jì)這日午飯有剩飯的學(xué)生人數(shù);若按平均每人剩10克米飯計(jì)算,這日午飯將浪費(fèi)多少千克米飯?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,設(shè)銳角∠AOB=α,將△DOC按逆時針方向旋轉(zhuǎn)得到△D′OC′(0°<旋轉(zhuǎn)角<90°)連接AC′、BD′,AC′與BD′相交于點(diǎn)M.
(1)當(dāng)四邊形ABCD為矩形時,如圖1.求證:△AOC′≌△BOD′.

(2)當(dāng)四邊形ABCD為平行四邊形時,設(shè)AC=kBD,如圖2.
①猜想此時△AOC′與△BOD′有何關(guān)系,證明你的猜想;
②探究AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是為(0,3)、(-1,0),將此平行四邊形繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;
(3)點(diǎn)M是第一象限內(nèi)拋物線上的一動點(diǎn),問:點(diǎn)M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),AC與EF相交于點(diǎn)O.
(1)過點(diǎn)B作AC的平行線BG,延長EF交BG于H;
(2)在(1)的圖中,找出一個與△BHF全等的三角形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y= x2 x﹣2與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,連接BD

(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P時x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l,交拋物線于點(diǎn)M,交直線BD于點(diǎn)N
①當(dāng)點(diǎn)P在線段OB上運(yùn)動時(不與O、B重合),求m為何值時,線段MN的長度最大,并說明此時四邊形DCMN是否為平行四邊形
②當(dāng)點(diǎn)P的運(yùn)動過程中,是否存在點(diǎn)M,使△BDM是以BD為直角邊的直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案