如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個(gè)頂點(diǎn),若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時(shí)向上平移,平移后的兩條直線分別交拋物線于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點(diǎn)D坐標(biāo)為(1,3),M為拋物線的頂點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著線段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

【答案】分析:(1)根據(jù)拋物線y=ax2-2ax+b,可知對(duì)稱軸方程,從而得到點(diǎn)A的坐標(biāo);再根據(jù)BC=10,梯形OABC的面積為18,可求B,C的坐標(biāo),再將O、B兩點(diǎn)的坐標(biāo)代入y=ax2-2ax+b,運(yùn)用待定系數(shù)法即可求出拋物線的解析式;
(2)在兩條直線平移的過程中,梯形的上下底發(fā)生了改變,但是梯形的高沒有變化,仍為3,即y2-y1=3,根據(jù)拋物線的解析式,用x1、x2表示出y1、y2,然后聯(lián)立y2-y1=3,可得到第一個(gè)關(guān)于x1、x2的關(guān)系式①;在兩條直線平移過程中,拋物線的對(duì)稱軸沒有變化,用x1、x2以及拋物線的對(duì)稱軸的解析式表示出梯形上下底的長(zhǎng),進(jìn)而得到梯形面積的表達(dá)式,這樣得到另外一個(gè)x1、x2的關(guān)系式②,聯(lián)立這兩個(gè)關(guān)系式,得到關(guān)于(x2-x1)與S的關(guān)系式③,將S=36代入②③的關(guān)系式中,即可列方程組求得x1、x2的值,進(jìn)而可求出點(diǎn)A1的坐標(biāo);
(3)要解答此題,首先要弄清幾個(gè)關(guān)鍵點(diǎn):
一、當(dāng)PQ∥AB時(shí),設(shè)直線AB與拋物線對(duì)稱軸的交點(diǎn)為E,可得△DPQ∽△DBE,可用t表示出DP、DQ的長(zhǎng),而E點(diǎn)坐標(biāo)易求得,根據(jù)相似三角形所得比例線段,即可得到此時(shí)t的值即t=
二、當(dāng)P、Q都停止運(yùn)動(dòng)時(shí),顯然BC>DM,所以此時(shí)t=DM÷1=3
設(shè)直線PQ與直線AB的交點(diǎn)為F,與x軸的交點(diǎn)為G;假設(shè)直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似.顯然t=不合題意,舍去,所以分兩種情況討論:①當(dāng)0<t<時(shí),由題意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x軸,則∠DPQ=∠FGA=∠FEQ,由此可證得△DPQ∽△DEB,DB、DE的長(zhǎng)已求得,可用t表示出DP、DQ的長(zhǎng),根據(jù)相似三角形所得比例線段,即可求得此時(shí)t的值;
②當(dāng)<t<3時(shí),方法同①;
在求得t的值后,還要根據(jù)各自的取值范圍將不合題意的解舍去.
解答:解:(1)∵y=ax2-2ax+b=a(x-1)2-a+b,
∴對(duì)稱軸為:直線x=1,
∴點(diǎn)A的坐標(biāo)為(2,0);
∵BC=10,梯形OABC的面積為18,
∴梯形OABC的高為:18×2÷(10+2)=3,
∴B(10÷2+1,3),即B(6,3),
C(1-10÷2,3),即C(-4,3).
將O(0,0),B(6,3)代入y=ax2-2ax+b,
,
解得
∴拋物線解析式為:y=x2-x;

(2)由題意得y2-y1=3,y2-y1=x22-x2-x12+x1=3,
得:(x2-x1)[(x2+x1)-]=3①,
S==3(x1+x2)-6,
得:x1+x2=+2②,
把②代入①并整理得:x2-x1=(S>0),
當(dāng)s=36時(shí),,
解得:,
把x1=6代入拋物線解析式,得y1=×62-×6=3,
∴點(diǎn)A1(6,3);

(3)存在t=秒,可使直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似.理由如下:
易知直線AB的解析式為y=x-,可得直線AB與對(duì)稱軸的交點(diǎn)E的坐標(biāo)為(1,-),
∴BD=5,DE=,DP=5-t,DQ=t,
當(dāng)PQ∥AB時(shí),=,
=,解得t=
設(shè)直線PQ與直線AB、x軸的交點(diǎn)分別為點(diǎn)F、G.假設(shè)直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似.下面分兩種情況討論:
①當(dāng)0<t<時(shí),如圖3-1;
∵△FQE∽△FAG,
∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;
易得△DPQ∽△DEB,
,即=,
解得t=,
∴t=不合題意,舍去;
②當(dāng)<t<3時(shí),如圖3-2;
∵△FAG∽△FQE,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,
易得△DPQ∽△DEB,
,即=,
解得t=,符合題意.
綜上,可知當(dāng)t=秒時(shí),直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似.
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合類試題,涉及到:二次函數(shù)解析式的確定、等腰梯形的性質(zhì)、圖形面積的求法、相似三角形的判定和性質(zhì)等重要知識(shí);在(3)題中能夠正確地畫出圖形,并準(zhǔn)確地找到所求的三角形是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點(diǎn)P為所求拋物線上的一動(dòng)點(diǎn),試判斷以點(diǎn)P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說明理由.
(3)如圖2,設(shè)點(diǎn)P在拋物線上且與點(diǎn)A不重合,直線PB與拋物線的另一個(gè)交點(diǎn)為Q,過點(diǎn)P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線y=-x2+b x+c經(jīng)過點(diǎn)A(1,0),B(-3,0)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求b,c的值.
(2)在第二象限的拋物線上,是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若不存在,請(qǐng)說明理由.
(3)如圖2,點(diǎn)E為線段BC上一個(gè)動(dòng)點(diǎn)(不與B,C重合),經(jīng)過B、E、O三點(diǎn)的圓與過點(diǎn)B且垂直于BC的直線交于點(diǎn)F,當(dāng)△OEF面積取得最小值時(shí),求點(diǎn)E坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南沙區(qū)一模)如圖1,已知拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=2OA=4.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)設(shè)P是(1)中拋物線上的一個(gè)動(dòng)點(diǎn),以P為圓心,R為半徑作⊙P,求當(dāng)⊙P與拋物線的對(duì)稱軸l及x軸均相切時(shí)點(diǎn)P的坐標(biāo).
(3)動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)B出發(fā),以每秒
2
個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)E作EG∥y軸,交AC于點(diǎn)G(如圖2).若E、F兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t.則當(dāng)t為何值時(shí),△EFG的面積是△ABC的面積的
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個(gè)頂點(diǎn),若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時(shí)向上平移,平移后的兩條直線分別交拋物線于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點(diǎn)D坐標(biāo)為(1,3),M為拋物線的頂點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著線段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對(duì)稱軸圍成的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(O,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點(diǎn)為拋物線上不同于A的一點(diǎn),連接PB并延長(zhǎng)交拋物線于點(diǎn)Q,過點(diǎn)P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案