如圖:?ABCD中,∠ABC的平分線交CD的延長線于E,∠BCD的平分線交BE于F,
求證:F是BE的中點(diǎn).

【答案】分析:根據(jù)平行四邊形的性質(zhì)得出AB∥CD,推出∠ABE=∠E,求出∠CBE=∠E,推出BC=CE,根據(jù)三線合一定理推出即可.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠ABE=∠E,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠CBE=∠E,
∴BC=CE,
∵CF平分∠BCD,
∴F為BE中點(diǎn)(三線合一).
點(diǎn)評:本題考查了平行四邊形的性質(zhì),角平分線定義,等腰三角形的性質(zhì)和判定,注意:等邊對等角,等角對等邊,平行四邊形的對邊平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說法不正確的是( 。
A、當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時,四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時,四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長CE交BA的延長線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•浙江)如圖,?ABCD中,對角線AC和BD交于點(diǎn)O,過O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案