【題目】如圖,在Rt△ABC中,∠ABC=90°,∠C=30°,點(diǎn)D是線段BC上的動(dòng)點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°至AD',連接BD'.若AB=2cm,則BD'的最小值為_____.
【答案】1.
【解析】
在AC上截取AE=AB=2,作EF⊥BC于F,如圖,先計(jì)算出AC=2AB=4,BC=2,∠BAC=60°,則CE=2,再在Rt△CEF中計(jì)算出EF=1,FC=,接著證明△ABD′≌△ADE得到DE=BE′,然后利用勾股定理得到DE2=DF2+EF2=(BD﹣)2+1,然后根據(jù)二次函數(shù)的性質(zhì)解決問題.
解:在AC上截取AE=AB=2,作EF⊥BC于F,如圖,
∵∠ABC=90°,∠C=30°,
∴AC=2AB=4,BC=AB=2,∠BAC=60°,
∴CE=AC﹣AE=2,
在Rt△CEF中,EF=CE=1,FC=EF=,
∵線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°至AD',
∴AD=AD′,∠DAD′=60°,
∴∠BAD′=∠EAD,
在△ABD′和△ADE中
,
∴△ABD′≌△ADE,
∴DE=BE′,
在Rt△DEF中,DE2=DF2+EF2=(﹣BD)2+12=(BD﹣)2+1,
∴當(dāng)BD=時(shí),DE2有最小值1,
∴BD'的最小值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)O.將∠COB繞點(diǎn)O順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0<α<90°),角的兩邊分別與BC,AB交于點(diǎn)M,N,連接DM,CN,MN,下列四個(gè)結(jié)論:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3,頂點(diǎn)為E,該拋物線與x軸交于A,B兩點(diǎn),與y軸交子點(diǎn)C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點(diǎn)D.求∠DBC﹣∠CBE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M為拋物線與x軸的焦點(diǎn)為A(-3,0),B(1,0),與y軸交于點(diǎn)C,連結(jié)AM,AC,點(diǎn)D為線段AM上一動(dòng)點(diǎn)(不與A重合),以CD為斜邊在CD上側(cè)作等腰Rt△DEC,連結(jié)AE,OE.
(1)求拋物線的解析式及頂點(diǎn)M的坐標(biāo);
(2)求解AD:OE的值;
(3)當(dāng)△OEC為直角三角形時(shí),求AD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=-2x-8分別與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P.
(1)若⊙P與x軸有公共點(diǎn),則k的取值范圍是______.
(2)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說明理由;
(3)當(dāng)⊙P與直線l相切時(shí),k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com