【題目】如圖,四邊形ABCD中,AB=CD,AB∥CD,點E、F在線段BD上,且BE=DF,連接AE、CF.

(1)指出線段AE與CF的關(guān)系,并說明理由;

(2)若將題中的條件“點E、F在線段BD上”改為“點E、F在直線BD上” ,那么(1)中的結(jié)論還一定能成立嗎?若能,直接寫出結(jié)論;若不能,請舉出反例加以說明.

【答案】(1)AE∥CF,AE=CF(2)不一定成立

【解析】

(1)由SAS證明△ABE≌△CDF,即可得出結(jié)論;
(2)畫出圖形,即可得出結(jié)論.

解:(1) AE∥CF,AE=CF 理由如下:

∵AB∥CD,∴∠ABE=∠CDF.

在△ABE和△CDF中,

∴△ABE≌△CDF.

∴AE=CF,∠AEB=∠CFD.

∴∠AED = ∠CFB,

∴AE∥CF

(2)不一定成立;如圖所示,AE與CF不平行,AE≠CF.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=RtAB=5cm,BC=3cm,若動點P從點C開始,按CABC的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求△ABP的周長.

2)問t滿足什么條件時,△BCP為直角三角形?

3)另有一點Q,從點C開始,按CBAC的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當PQ中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下列數(shù)組作為三角形的三條邊長,其中能構(gòu)成直角三角形的是( )

A. 1, 3 B. , ,5 C. 1.5,22.5 D. , ,

【答案】C

【解析】A、12+2≠32,不能構(gòu)成直角三角形,故選項錯誤;

B(2+2≠52,不能構(gòu)成直角三角形,故選項錯誤;

C、1.52+22=2.52,能構(gòu)成直角三角形,故選項正確;

D、(2+22,不能構(gòu)成直角三角形,故選項錯誤.

故選:C

型】單選題
結(jié)束】
3

【題目】在RtABC中,C=90°,AC=9,BC=12,則點C到斜邊AB的距離是( )

ABC9D6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點,∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點P從點O出發(fā),按逆時針方向沿周長為l的圖形運動一周,O,P兩點間的距離y與點P走過的路程x的函數(shù)關(guān)系如圖,那么點P所走的圖形是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,D是BC的中點.
(1)作圖: ①過B作AC的平行線BH;
②過D作BH的垂線,分別交AC,BH,AB的延長線于E,F(xiàn),G.
(2)在圖中找出一對全等的三角形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)=3.

(2)(y+2)2=(3y﹣1)2

(3)(x﹣2)(x+5)=8.

(4)(2x+1)2=﹣6x﹣3.

(5)2x2﹣3x﹣2=0.

(6)4x2﹣12x﹣1=0(配方法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,D是BC的中點.
(1)作圖: ①過B作AC的平行線BH;
②過D作BH的垂線,分別交AC,BH,AB的延長線于E,F(xiàn),G.
(2)在圖中找出一對全等的三角形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 矩形ABCD中,AB=8,BC=6,P為AD上一點, 將△ABP 沿BP翻折至△EBP, PE與CD相交于點O,BE與DC相交于G點,且OE=OD,

(1)求證:AP=DG

(2)若設(shè)AP=x,則GE=______,GC=_______(用含有x的代數(shù)式表示);并求AP的長度

查看答案和解析>>

同步練習冊答案