如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=3,AB=5.點(diǎn)P從點(diǎn)O出發(fā)沿OA以每秒1個單位長的速度向點(diǎn)A勻速運(yùn)動,到達(dá)點(diǎn)A后立刻以原來的速度沿AO返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動.伴隨著P、Q的運(yùn)動,DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)E.點(diǎn)P、Q同時出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時停止運(yùn)動,點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動的時間是t秒(t>0).
(1)求直線AB的解析式;
(2)在點(diǎn)P從O向A運(yùn)動的過程中,求△APQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在點(diǎn)E從B向O運(yùn)動的過程中,完成下面問題:
①四邊形QBED能否成為直角梯形?若能,請求出t的值;若不能,請說明理由;
②當(dāng)DE經(jīng)過點(diǎn)O時,請你直接寫出t的值.
解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4. ∴A(3,0),B(0,4). 設(shè)直線AB的解析式為y=kx+b.
∴直線AB的解析式為 (2)如圖1,過點(diǎn)Q作QF⊥AO于點(diǎn)F. ∵AQ=OP=t,∴AP=3-t. 由△AQF∽△ABO,得 ∴ ∴QF= ∴S ∴S= (3)四邊形QBED能成為直角梯形. 、偃鐖D2,當(dāng)DE∥QB時, ∵DE⊥PQ, ∴PQ⊥QB,四邊形QBED是直角梯形. 此時∠AQP=90°. 由△APQ∽△ABO,得 ∴ 解得t= 、谌鐖D3,當(dāng)PQ∥BO時, ∵DE⊥PQ, ∴DE⊥BO,四邊形QBED是直角梯形. 此時∠APQ=90°. 由△AQP∽△ABO,得 即 解得t= (4)t=或t= |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com