【題目】一輛汽車在公路上行駛,其所走的路程和所用的時間可用 下表表示:

時間/tmin

1

2.5

5

10

20

50

路程/s km

2

5

10

20

40

100

1)在這個變化過程中,自變量、因變量各是什么?

2)當汽車行駛路程s20km時,所花的時間t是多少分鐘?

3)從表中說出隨著t逐漸變大,s的變化趨勢是什么?

4)如果汽車行駛的時間為t (min),行駛的路程為s ,那么路程s 與時間t之間的關系式為 .

5)按照這一行駛規(guī)律,當所花的時向t300min時,汽車行駛的路程 s是多少千米?

【答案】1)自變量是時間,因變量是路程;(210min;(3)隨著t逐漸變大,s逐漸變大;(4s=2t;(560千米

【解析】

1)根據(jù)自變量、因變量的定義寫出即可;(2)根據(jù)表格直接寫出汽車行駛路程s20km時間即可;(3)根據(jù)表格直接寫出隨著t逐漸變大,s的變化趨勢;(4)通過路程=速度×時間,寫出關系式即可;(5)通過(4)的關系式直接算出即可.

1)自變量是時間,因變量是路程;

2)∵當t=1時,s=2,

∴v==2km/min

t==10min,

或者從表格直接觀察得出;

(3)由表得,隨著t逐漸變大,s逐漸變大(或者時間每增加1分鐘,路程增加2千米);

4)由(2)得v=2,

∴路程s與時間t之間的關系式為s=2t,故答案為s=2t;

5)把t=300代入s=2t,得s=600km

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】暖羊羊有5張寫著不同數(shù)字的卡片,請你按要求選擇卡片,完成下列各問題:

1)從中選擇兩張卡片,使這兩張卡片上數(shù)字的乘積最大.

這兩張卡片上的數(shù)字分別是 ,積為 _

2)從中選擇兩張卡片,使這兩張卡片上數(shù)字相除的商最。

這兩張卡片上的數(shù)字分別是 ,商為

3)從中選擇4張卡片,每張卡片上的數(shù)字只能用一次,選擇加、減、乘、除中的適當方法(可加括號),使其運算結果為24,寫出運算式子.(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB90°,sinABC8,點DAB的中點,過點BCD的垂線,垂足為點E.

(1)求線段CD的長;

(2)cosABE的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+cx軸交于點A(2,0).

(1)填空:c= (用含b的式子表示)

(2)b4

①求證:拋物線與x軸有兩個交點;

②設拋物線與x軸的另一個交點為B,當線段AB上恰有5個整點(橫坐標、縱坐標都是整數(shù)的點),直接寫出b的取值范圍為 ;

(3)直線y=x4經(jīng)過拋物線y=x2+bx+c的頂點P,求拋物線的表達式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,圖形G上點P(x,y)的縱坐標y與其橫坐標x的差yx稱為P點的“坐標差”,而圖形G上所有點的“坐標差”中的最大值稱為圖形G的“特征值”

(1)①點A(1,3) 的“坐標差”為 。

②拋物線y=x2+3x+3的“特征值”為

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點B(m,0)與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C的“坐標差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數(shù)的表達式。

(3)如圖,在平面直角坐標系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點D、E請直接寫出⊙M的“特征值”為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣6)﹣(+15+4﹣(﹣15

2)﹣2×3﹣(﹣4×2+3

3)(×(﹣24

4)﹣14(﹣32÷(﹣

5)﹣18÷(﹣32+5×(﹣23﹣(﹣15÷5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圓上有五個點,這五個點將圓分成五等份(每一份稱為一段弧長),把這五個點按順時針方向依次編號為12,34,5,若從某一點開始,沿圓周順時針方向行走,點的編號是數(shù)字幾,就走幾段弧長,則稱這種走法為一次“移位”.如:小明在編號為3的點,那么他應走3段弧長,即從3451為第一次“移位”,這時他到達編號為1的點,然后從12為第二次“移位”.若小明從編號為4的點開始,第2020次“移位”后,他到達編號為______的點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABBC2,以AB為直徑的⊙O分別交BC、AC于點DE,且點DBC的中點.

1)求證:ABC為等邊三角形;

2)求DE的長;

3)在線段AB的延長線上是否存在一點P,使PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案