關(guān)于x的方程x2-mx+m-2=0,對其根的情況敘述正確的是


  1. A.
    有兩個相等的實數(shù)根
  2. B.
    有兩個不相等的實數(shù)根
  3. C.
    沒有實數(shù)根
  4. D.
    根的情況不能確定
B
分析:根據(jù)根的判別式的值的大小與零的關(guān)系來判斷.
若△>0則有兩不相等的實數(shù)根;
若△<0,則無實數(shù)根;
若△=0,則有兩相等的實數(shù)根.
解答:∵△=b2-4ac=(-m)2-4(m-2)
=m2-4m+8=(m-2)2+4>0,
∴有兩不相等的實數(shù)根.
故選B
點評:總結(jié):1、一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
2、一個代數(shù)式的平方是非負數(shù).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如果關(guān)于x的方程x2+x-
1
4
k=0
沒有實數(shù)根,那么k的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用配方法解關(guān)于x的方程x2+px=q時,應(yīng)在方程兩邊同時加上( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2-2x+k=0的一根是2,則k=
0
0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

通過觀察,發(fā)現(xiàn)方程不難求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)觀察上述方程及其解,可猜想關(guān)于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a

(2)試驗證:當x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的結(jié)論,解關(guān)于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關(guān)于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
無解,求a的值?

查看答案和解析>>

同步練習冊答案