如圖,四邊形OABC是矩形,OA=4,OC=8,將矩形OABC沿直線AC折疊,使點(diǎn)B落在D處,AD交OC于E.
(1)求OE的長(zhǎng);
(2)求過O,D,C三點(diǎn)拋物線的解析式;
(3)若F為過O,D,C三點(diǎn)拋物線的頂點(diǎn),一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間t(秒)為何值時(shí),直線PF把△FAC分成面積之比為1:3的兩部分.
【答案】分析:(1)已知四邊形OABC是矩形,證明△CDE≌△AOE推出OE2+OA2=(AD-DE)2求出OE.
(2)本題要借助輔助線的幫助,證明△DGE≌△CDE.根據(jù)線段比求出DG,EG以及點(diǎn)D的坐標(biāo).列出解析式求出a,b的值.
(3)設(shè)直線AC的解析式為y=kx+b,把頂點(diǎn)坐標(biāo)代入求出k,b.證明△AMH∽△AOC推出m的值.
解答:解:(1)∵四邊形OABC是矩形,
∴∠CDE=∠AOE=90°,OA=BC=CD.
又∵∠CED=∠OEA,
∴△CDE≌△AOE.
∴OE=DE.
∴OE2+OA2=(AD-DE)2,
即OE2+42=(8-OE)2,
解之,得OE=3.

(2)EC=8-3=5.如圖,過D作DG⊥EC于G,
∴△DGE∽△CDE.
,
∴DG=,EG=
∴D(
因O點(diǎn)為坐標(biāo)原點(diǎn),
故可設(shè)過O,C,D三點(diǎn)拋物線的解析式為y=ax2+bx.

解之,得

(3)∵拋物線的對(duì)稱軸為x=4,
∴其頂點(diǎn)坐標(biāo)為
設(shè)直線AC的解析式為y=kx+b,
解之,得

設(shè)直線FP交直線AC于H(m,m-4),過H作HM⊥OA于M.
∴△AMH∽△AOC.
∴HM:OC=AH:AC.
∵S△FAH:S△FHC=1:3或3:1,
∴AH:HC=1:3或3:1,
∴HM:OC=AH:AC=1:4或3:4.
∴HM=2或6,
即m=2或6.
∴H1(2,-3),H2(6,-1).
直線FH1的解析式為y=x-
當(dāng)y=-4時(shí),x=
直線FH2的解析式為
當(dāng)y=-4時(shí),x=
∴當(dāng)t=秒或秒時(shí),
直線FP把△FAC分成面積之比為1:3的兩部分.
點(diǎn)評(píng):本題考查的是相似三角形的判定以及二次函數(shù)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點(diǎn)M從O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向A運(yùn)動(dòng);點(diǎn)N從B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向C運(yùn)動(dòng).其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)精英家教網(wǎng)動(dòng).過點(diǎn)N作NP⊥OA于點(diǎn)P,連接AC交NP于Q,連接MQ. 
(1)點(diǎn)
 
(填M或N)能到達(dá)終點(diǎn);
(2)求△AQM的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的正方形紙片.點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)C在y軸上,OC=4,點(diǎn)E為BC的中點(diǎn),點(diǎn)N的坐標(biāo)為(3,0),過點(diǎn)N且平行于y軸的直線MN與EB交于點(diǎn)M.現(xiàn)將紙片折疊,使頂點(diǎn)C落精英家教網(wǎng)在MN上,并與MN上的點(diǎn)G重合,折痕為EF,點(diǎn)F為折痕與y軸的交點(diǎn).
(1)求點(diǎn)G的坐標(biāo);
(2)求折痕EF所在直線的解析式;
(3)設(shè)點(diǎn)P為直線EF上的點(diǎn),是否存在這樣的點(diǎn)P,使得以P,F(xiàn),G為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為正方形,點(diǎn)A在x軸上,點(diǎn)C在y軸上,點(diǎn)B(8,8),點(diǎn)P在邊OC上,點(diǎn)M在邊AB上.把四邊形OAMP沿PM對(duì)折,PM為折痕,使點(diǎn)O落在BC邊上的點(diǎn)Q處.動(dòng)點(diǎn)E從點(diǎn)O出發(fā),沿OA邊以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,同時(shí)動(dòng)點(diǎn)F從點(diǎn)O出發(fā),沿OC邊以相同的速度向終點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)A時(shí),E、F同時(shí)停止運(yùn)動(dòng).
(1)若點(diǎn)Q為線段BC邊中點(diǎn),直接寫出點(diǎn)P、點(diǎn)M的坐標(biāo);
(2)在(1)的條件下,設(shè)△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點(diǎn)H,使△PMH為等腰三角形,若存在,求出點(diǎn)H的坐標(biāo),若不存在,請(qǐng)說明理由;
(4)若點(diǎn)Q為線段BC上任一點(diǎn)(不與點(diǎn)B、C重合),△BNQ的周長(zhǎng)是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長(zhǎng)為2的正方形,反比例函數(shù)y=
k
x
的圖象過點(diǎn)B,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點(diǎn)坐標(biāo)為(3,4),AB=6,若動(dòng)點(diǎn)P沿著O→A→B→C的方向運(yùn)動(dòng)(不包括O點(diǎn)和C點(diǎn)),P點(diǎn)運(yùn)動(dòng)路程為S,下列語句中正確的個(gè)數(shù)精英家教網(wǎng)是(  )
(1)直線OA的函數(shù)解析式為y=
4
3
x
;
(2)梯形OABC的周長(zhǎng)為24;
(3)若點(diǎn)P在線段AB上時(shí),P點(diǎn)的坐標(biāo)為(S-5,4)
(4)若點(diǎn)P在線段BC上時(shí),P點(diǎn)的坐標(biāo)為(9,15-S)
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案